Terahertz-wave generation with periodically inverted gallium arsenide
Tóm tắt
We overview methods of THz-wave generation using frequency down-conversion in GaAs with periodically-inverted crystalline orientation. First, we compare different nonlinear-optical materials suitable for THz generation, analyze THz generation process in quasi-phase-matched crystals and consider theoretical limits of optical-to-THz conversion. Then, we review single-pass optical rectification experiments with femtosecond pump pulses, performed in periodically-inverted GaAs, where monochromatic THz output tunable in the range 0.9–3.0 THz was produced. Finally, we describe a novel approach to create a compact highly efficient tunable (0.5–3.5 THz) room temperature monochromatic THz source, based on the concept of intracavity THz generation via resonantly-enhanced difference frequency mixing. This approach allowed generating of 1 mW of average THz power, potentially scalable to 10–100 mW.
Tài liệu tham khảo
M. Tonouchi, “Cutting-Edge Terahertz Technology,” Nature Photon. 1, 97 (2007).
A. Mayer and F. Keilmann, “Far-Infrared Nonlinear Optics. I. χ(2) near Ionic Resonance,” Phys. Rev. A 33, 6954 (1986).
R. R. Jones, D. You, and P. H. Bucksbaum, “Ionization of Rydberg Atoms by Subpicosecond Half-Cycle Electromagnetic Pulses,” Phys. Rev. Lett. 70, 1236 (1993).
P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Nonlinear Terahertz Response of n-Type GaAs,” Phys. Rev. Lett. 96, 187402 (2006).
P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
D. J. Cook and R. M. Hochstrasser, “Intense Terahertz Pulses by Four-Wave Rectification in Air,” Opt. Lett. 25, 1210 (2000).
T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of Single-Cycle THz Transients with High Electric-Field Amplitudes,” Opt. Lett. 30, 2805 (2005).
F. Zernike, Jr. and P. R. Berman, “Generation of Far Infrared as a Difference Frequency,” Phys. Rev. Lett. 15, 999 (1965).
K. H. Yang, J. R. Morris, P. L. Richards, and Y. R. Shen, “Phase-Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973).
G. D. Boyd, T. J. Bridges, and C. K. N. Patel, “Phase-Matched Submillimeter Wave Generation by Difference-Frequency Mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553 (1972).
W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent Terahertz Waves Based on Difference-Frequency Generation in an Annealed Zinc-Germanium Phosphide Crystal: Improvements on Tuning Ranges and Peak Powers,” Opt. Commun. 233, 183 (2004).
W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, Tunable, and Coherent 0.18-5.27-THz Source Based on GaSe Crystal,” Opt. Lett. 27, 1454 (2002).
B. Lax, R. L. Aggarwal, and G. Favrot, “Far-Infrared Step-Tunable Coherent Radiation Source: 70 μm to 2 mm,” Appl. Phys. Lett. 23, 679–681 (1973).
S. Ya. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, “High-Power Tunable, 0.5–3.0 THz Radiation Source Based on Nonlinear Difference Frequency Mixing of CO2 Laser Lines,” J. Opt. Soc. Am. A 24, 2509 (2007).
T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable THz Wave Generation in the 3-to 7-THz Region from GaP,” Appl. Phys. Lett. 83, 237 (2003).
T. Taniuchi and H. Nakanishi, “Continuously Tunable Terahertz-Wave Generation in GaP Crystal by Collinear Difference Frequency Mixing,” Electron. Lett. 40, 327 (2004).
D. E. Thompson and P. D. Coleman, “Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. 12, 995–1000 (1974).
M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously Tunable Submillimeter Wave Source,” Appl. Phys. Lett. 26, 418 (1975).
K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent Tunable THz-Wave Generation from LiNbO3 with Monolithic Grating Coupler,” Appl. Phys. Lett. 68, 2483 (1996).
T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact Source of Continuously and Widely Tunable Terahertz Radiation,” Opt. Express 14, 1582–1584 (2006).
T. Yajima and N. Takeuchi, “Far-Infrared Difference-Frequency Generation by Picosecond Laser Pulses,” Jpn. J. Appl. Phys. 9, 1361 (1970).
K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3,” Appl. Phys. Lett. 19, 320 (1971).
L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz Beam Generation by Femtosecond Optical Pulses in Electro-Optic Materials,” Appl. Phys. Lett. 61, 1784 (1992).
B. Ferguson and X.-C. Zhang, “Materials for Terahertz Science and Technology,” Nature Mater. 1, 26 (2002).
A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz Optical Rectification from 〈110〉 Zinc-Blende Crystals,” Appl. Phys. Lett. 64, 1324 (1994).
M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and Detection of Terahertz Radiation by Electro-Optical Process in GaAs Using 1.56 μm Fiber Laser Pulses,” Appl. Phys. Lett. 85, 3974 (2004).
G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power Scalable Compact THz System Based on an Ultrafast Yb-Doped Fiber Amplifier,” Opt. Express 14, 7909 (2006).
A. Stepanov, J. Kuh, I. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the Energy of THz Pulses Created by Optical Rectification,” Opt. Express 13, 5762 (2005).
K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ Ultrashort Terahertz Pulses by Optical Rectification,” Appl. Phys. Lett. 90, 171121 (2007).
Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of Narrow-Band Terahertz Radiation via Optical Rectification of Femtosecond Pulses in Periodically Poled Lithium Niobate,” Appl. Phys. Lett. 76, 2505–2507 (2000).
C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of Tunable Narrow-Band Surface-Emitted Terahertz Radiation in Periodically Poled Lithium Niobate,” Opt. Lett. 26, 563 (2001).
Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-Emitted Terahertz-Wave Difference Frequency Generation in Two-Dimensional Periodically Poled Lithium Niobate,” Opt. Lett. 30, 2927 (2005).
Y. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-Wave Generation from Quasi-Phase-Matched GaP for 1.55 μm Pumping,” Appl. Phys. Lett. 88, 071118-1 (2006).
K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-Wave Generation in Quasi-Phase-Matched GaAs,” Appl. Phys. Lett. 89, 141119-1 (2006).
G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “High-Power Source of THz Radiation Based on Orientation-Patterned GaAs Pumped by a Fiber Laser,” Opt. Express 14, 4439 (2006).
S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, “Generation of Magawatt-Power Terahertz Pulses by Noncollinear Difference-Frequency Mixing in GaAs,” J. Appl. Phys. 98, 026101 (2005).
R. L. Aggarwal and B. Lax, “Optical Mixing of CO2 Lasers in the Far-Infrared,” in Nonlinear Infrared Generation, Topics in Appl. Phys., Vol. 16, Ed. by Y.-R. Shen (Springer, Berlin, 1977).
K. L. Vodopyanov, “Optical Generation of Narrow-Band Terahertz Packets in Periodically Inverted Electro-Optic Crystals: Conversion Efficiency and Optimal Laser Pulse Format,” Opt. Express 14, 2263 (2006).
G. Gallot, J. Zhang, R. W. McGowan, T.-I. Jeon, and D. Grischkowsky, “Measurements of the THz Absorption and Dispersion of ZnTe and their Relevance to the Electro-Optic Detection of THz Radiation,” Appl. Phys. Lett. 74, 3450 (1999).
J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of Terahertz-Wave output from LiNbO3 Optical Parametric Oscillators by Cryogenic Cooling,” Opt. Lett. 24, 202 (1999).
G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, “Microwave Nonlinear Susceptibilities Due to Electronic and Ionic Anharmonicities in Acentric Crystals,” Phys. Rev. Lett. 26, 387 (1971).
D. N. Nikogosyan, Properties of Optical and Laser-Related Materials, Handbook (Wiley, Chichester, 1997).
W. C. Hurlbut, Yun-Shik Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multi-Photon Absorption and Nonlinear Refraction of GaAs in the Mid-Infrared,” Opt. Lett. 32, 668 (2007).
M. Yin, X. Sun, S. H. Tang, and W. Ji, “Femtosecond Determination of Optical Nonlinearities in CdS, GaP, ZnO, ZnS, ZnSe, and ZnTe,” in Proc. of the Conf. on Lasers Electro-Opt. Pacific, Rim, 1999, p. 873.
A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. Wei, J. Wang, J. Young, and E. W. van Stryland, “Determination of Bound-Electronic and Free-Carrier Nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405 (1992).
W.-Q. He, C.-M. Gu, and W.-Z. Shen, “Direct Evidence of Kerr-Like Nonlinearity by Femtosecond Z-scan Technique,” Opt. Express 14, 5476 (2006).
R. DeSalvo, A. A. Said, D. J. Hagan, E. W. van Stryland, and M. Sheik-Bahae, “Infrared to Ultraviolet Measurements of Two-Photon Absorption and n 2 in Wide Bandgap Solids,” IEEE J. Quant. Electr. 32, 1324 (1996).
L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-Bonded Stacked GaAs for Quasi-Phase-Matched Second-Harmonic Generation of a Carbon Dioxide Laser,” Electron. Lett. 29, 1942 (1993).
L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-Epitaxial Fabrication of Thick, Orientation-Patterned GaAs Films for Nonlinear Optical Frequency Conversion,” Appl. Phys. Lett. 79, 904 (2001).
Y.-S. Lee, W. C. Hurlbut, K. L. Vodopyanov, M. M. Fejer, and V. G. Kozlov, “Generation of Multicycle Terahertz Pulses via Optical Rectification in Periodically Inverted GaAs Structures,” Appl. Phys. Lett. 89, 181104 (2006).
M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quant. Electr. 28, 2631 (1992).
J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity Terahertz-Wave Generation in a Synchronously Pumped Optical Parametric Oscillator Using Quasi-Phase-Matched GaAs,” Opt. Lett. 32, 1284 (2007).
J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, “Terahertz Sources Based on Intracavity Parametric Down-Conversion in Quasi-Phase-Matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. (in press)
J.-J. Douillet, A. Zondy, S. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and Frequency Tuning of Thermally Loaded Continuous-Wave AgGaS2 Optical Parametric Oscillators,” J. Opt. Soc. Am. 16, 1481 (1999).
M. Cronin-Golomb, “Cascaded Nonlinear Difference-Frequency Generation of Enhanced Terahertz Wave Production,” Opt. Lett. 29, 2046 (2004).
A. G. Stepanov, A. A. Melnikov, V. O. Kompanets, and S. V. Chekalin, “Spectral Modification of Femtosecond Laser Pulses in the Process of Highly Efficient Generation of Terahertz Radiation via Optical Rectification,” JETP Lett. 85, 227 (2007).
J. E. Schaar, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, C. Lynch, D. Bliss, and V. G. Kozlov, “Tunable Terahertz Generation inside a Synchronously-Pumped Optical Parametric Oscillator Using Quasi-Phasematched GaAs,” in Proc. of the Optical Terahertz Science and Technology Topical Meeting, OTST’2007, Tech. Digest Paper WB7 (FL, Orlando, London, 2007).