Terahertz Measurements on Subwavelength-Size Samples Down to the Tunneling Limit
Tóm tắt
For terahertz spectroscopy on single crystals, the wavelength
$$\lambda$$
often is comparable to the size of the studied samples, emphasizing diffraction effects. Using a continuous-wave terahertz spectrometer in transmission geometry, we address the effect of the sample size on the achievable accuracy of the optical properties, focusing in particular on the phase data. We employ
$$\alpha$$
-lactose monohydrate as a paradigmatic example and compare data that were measured using apertures with diameters D in the range from 10 to 0.2 mm. For small D, strong diffraction typically invalidates a quantitative analysis of the transmitted amplitude at low frequencies. The phase data, however, can be evaluated to lower frequency and show a more systematic dependence on D. For a quantitative analysis, we employ a waveguide picture for the description of small apertures with a cylindrical bore. For D as small as 0.2 mm, corresponding to 1/D = 50 cm
$$^{-1}$$
, a circular waveguide does not support propagating waves below its cut-off frequency
$$1/\lambda _c$$
=
$$\omega _c/2\pi c \approx 29$$
cm
$$^{-1}$$
. Experimentally, we confirm this cut-off for cylindrical apertures with a thickness
$$d_{\text {ap}}$$
= 1 mm. Close to
$$\omega _c$$
, the measured phase velocity is an order of magnitude larger than c, the speed of light in vacuum. The cut-off is washed out if a sample is mounted on a thin aperture with a conical bore. In this case, the phase data of
$$\alpha$$
-lactose monohydrate for D = 0.2 mm can quantitatively be described down to about 10 cm
$$^{-1}$$
if the waveguide-like properties of the aperture are taken into account in the analysis.
Tài liệu tham khảo
Y.S. Lee, Principles of Terahertz Science and Technology, Springer, Berlin (2008). https://link.springer.com/book/10.1007/978-0-387-09540-0
M. Tonouchi, Cutting-edge terahertz technology, Nat. Photonics 1, 97 (2007). https://doi.org/10.1038/nphoton.2007.3
P. U. Jepsen, D. G. Cooke, and M. Koch, Terahertz spectroscopy and imaging modern techniques and applications, Laser Photon. Rev. 5, 124 (2011). https://doi.org/10.1002/lpor.201000011
J. B. Baxter and G. W. Guglietta, Terahertz spectroscopy, Anal. Chem 83, 4342 (2011). https://doi.org/10.1021/ac200907z
J. Lloyd-Hughes and T.-I. Jeon, A Review of the Terahertz Conductivity of Bulk and Nano-Materials, J. Infrared Millim. Terahertz Waves 33, 871 (2012). https://link.springer.com/article/10.1007/s10762-012-9905-y
J. F. O’Hara, W. Withayachumnankul, and I. Al-Naib, A Review on Thin-film Sensing with Terahertz Waves, J. Infrared Millim. Terahertz Waves 33, 245 (2012). https://link.springer.com/article/10.1007/s10762-012-9878-x
W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications, Eur. J. Phys. 34, S179 (2013). https://iopscience.iop.org/article/10.1088/0143-0807/34/6/S179
R.A. Lewis, A review of terahertz sources, J. Phys. D Appl. Phys. 47, 374001 (2014). https://iopscience.iop.org/article/10.1088/0022-3727/47/37/374001
R. Safian, G. Ghazi, and N. Mohammadian, Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain, Opt. Eng. 58, 110901 (2019). https://doi.org/10.1117/1.OE.58.11.110901
M. Scheffler and M. Dressel, Broadband microwave spectroscopy in Corbino geometry for temperatures down to 1.7 K, Rev. Sci. Instrum. 76, 074702 (2005). https://doi.org/10.1063/1.1947881
J. Krupka, Frequency domain complex permittivity measurements at microwave frequencies, Meas. Sci. Technol. 17, R55 (2006). https://doi.org/10.1088/0957-0233/17/6/R01
R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, Terahertz microscopy with submicrometre resolution, J. Opt. A: Pure Appl. Opt. 7, S184 (2005). http://dx.doi.org/10.1088/1464-4258/7/2/024
H.-G. von Ribbeck, M. Brehm, D.W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, Spectroscopic THz near-field microscope, Opt. Express 16, 3430 (2008). https://doi.org/10.1364/OE.16.003430
H. T. Stinson, A. Sternbach, O. Najera, R. Jing, A. S. Mcleod, T. V. Slusar, A. Mueller, L. Anderegg, H. T. Kim, M. Rozenberg, and D. N. Basov, Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies, Nature Comm. 9, 3604 (2018). https://doi.org/10.1038/s41467-018-05998-5
R. Inoue, N. Uchida, and M. Tonouchi, Scanning probe laser terahertz emission microscopy system, Jpn. J. Appl. Phys. 45, L824 (2006). https://doi.org/10.1143/JJAP.45.L824
C. DAmico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, Conical Forward THz Emission from Femtosecond-Laser-Beam Filamentation in Air, Phys. Rev. Lett. 98, 235002 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.235002
J. Zhao, W. Chu, L. Guo, Z. Wang, J. Yang, W. Liu, Y. Cheng, and Z. Xu, Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air, Sci. Rep. 4, 3880 (2014). https://doi.org/10.1038/srep03880
M. Baillergeau, K. Maussang, T. Nirrengarten, J. Palomo, L. H. Li, E. H. Linfield, A. G. Davies, S. Dhillon, J. Tignon, and J. Mangeney, Diffraction-limited ultrabroadband terahertz spectroscopy, Sci. Rep. 6, 24811 (2016). https://doi.org/10.1038/srep24811
J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85, 3966 (2000). https://link.aps.org/doi/10.1103/PhysRevLett.85.3966
A. Grbic and G. V. Eleftheriades, Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens, Phys. Rev. Lett. 92, 117403 (2004). https://link.aps.org/doi/10.1103/PhysRevLett.92.117403
H. A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66, 163-182 (1944). https://link.aps.org/doi/10.1103/PhysRev.66.163
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391, 667 (1998). https://doi.org/10.1038/35570
F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers Light passing through subwavelength apertures, Rev. Mod. Phys. 82, 729 (2010). https://link.aps.org/doi/10.1103/RevModPhys.82.729
G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Terahertz waveguides, J. Opt. Soc. Am. B 17, 851 (2000). https://doi.org/10.1364/JOSAB.17.000851
R. E. Collin, Foundations for Microwave Engineering, Wiley & Sons Ltd. (2000). https://www.wiley-vch.de/de/fachgebiete/ingenieurwesen/foundations-of-microwave-engineering-978-0-7803-6031-0
A. Enders and G. Nimtz, On superluminal barrier traversal, J. Phys. I 2, 1693 (1992). https://doi.org/10.1051/jp1:1992236
H. G. Winful, Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox, Phys. Rep. 436, 1 (2006). https://doi.org/10.1016/j.physrep.2006.09.002
W. Withayachumnankul, B. M. Fischer, B. Ferguson, B. R. Davis, and D. Abbott, A Systemized View of Superluminal Wave Propagation, Proceedings of the IEEE 98, 1775 (2010). https://doi.org/10.1109/JPROC.2010.2052910
H. Aichmann and G. Nimtz, On the traversal time of barriers, Found Phys. 44, 678 (2014). https://doi.org/10.1007/s10701-014-9804-2
W. Zhang, E. R. Brown, M. Rahman, and M. L. Norton, Observation of terahertz absorption signatures in microliter DNA solutions, Appl. Phys. Lett. 102, 023701 (2013). https://doi.org/10.1063/1.4775696
A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples, New J. Phys. 12, 043017 (2010). https://doi.org/10.1088/1367-2630/12/4/043017
A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. Cámara Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer, J. Opt. Soc. Am. B 29, 614 (2012). https://doi.org/10.1364/JOSAB.29.000614
A. Roggenbuck, M. Langenbach, K. Thirunavukkuarasu, H. Schmitz, A. Deninger, I. Cámara Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, Enhancing the stability of a continuous-wave terahertz system by photocurrent normalization, J. Opt. Soc. Am. B 30, 1397 (2013). https://doi.org/10.1364/JOSAB.30.001397
M. Langenbach, A. Roggenbuck, I. Cámara Mayorga, A. Deninger, K. Thirunavukkuarasu, J. Hemberger, and M. Grüninger, Group Delay in THz Spectroscopy with Ultra-Wideband Log-Spiral Antennae, J. Infrared Milli. Terahz. Waves 35, 918 (2014). https://doi.org/10.1007/s10762-014-0098-4
K. Thirunavukkuarasu, M. Langenbach, A. Roggenbuck, E. Vidal, H. Schmitz, J. Hemberger, and M. Grüninger, Self-normalizing phase measurement in multimode terahertz spectroscopy based on photomixing of three lasers, Appl. Phys. Lett. 106, 031111 (2015). https://doi.org/10.1063/1.4906374
Q. Liang, G. Klatt, N. Krau, O. Kukharenko, and T. Dekorsy, Origin of potential errors in the quantitative determination of terahertz optical properties in time-domain terahertz spectroscopy, Chin. Opt. Lettt. 13, 093001 (2015). http://dx.doi.org/10.3788/COL201513.093001
P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy, Opt. Exp. 18, 15338 (2010). https://doi.org/10.1364/OE.18.015338
T.E. Hartman, Tunneling of a wave packet, J. Appl. Phys. 33, 3427 (1962). https://doi.org/10.1063/1.1702424
A. Degiron, H.J. Lezec, N. Yamamoto, and T.W. Ebbesen, Optical transmission properties of a single subwavelength aperture in a real metal, Optics Comm. 239, 61 (2004). https://doi.org/10.1016/j.optcom.2004.05.058
M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002). 239, 61 (2004). https://doi.org/10.1017/CBO9780511606168