TensorFlow: Biology’s Gateway to Deep Learning?

Cell Systems - Tập 2 Số 1 - Trang 12-14 - 2016
Ladislav Rampášek1,2, Anna Goldenberg1,2
1Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON M5S 2E4, Canada
2SickKids Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. http://download.tensorflow.org/paper/whitepaper2015.pdf.

Alipanahi, 2015, Nat. Biotechnol., 33, 831, 10.1038/nbt.3300

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Warde-Farley, D., and Bengio, Y. (2012). Theano: new features and speed improvements. arXiv, arXiv:1211.5590, http://arxiv.org/abs/1211.5590.

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A matlab-like environment for machine learning. BigLearn, NIPS Workshop.

Dahl, G.E., Jaitly, N., and Salakhutdinov, R. (2014). Multi-task neural networks for QSAR predictions. arXiv, arXiv:1406.1231, http://arxiv.org/abs/1406.1231.

Di Lena, 2012, Bioinformatics, 28, 2449, 10.1093/bioinformatics/bts475

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. Proceedings of the ACM International Conference on Multimedia. ACM, pp. 675–678.

LeCun, 2015, Nature, 521, 436, 10.1038/nature14539

Xiong, 2015, Science, 347, 1254806, 10.1126/science.1254806

Zhou, 2015, Nat. Methods, 12, 931, 10.1038/nmeth.3547