Tensor-based anomaly detection: An interdisciplinary survey
Tài liệu tham khảo
Chandola, 2009, Anomaly detection: a survey, ACM Comput. Surv., 41, 15, 10.1145/1541880.1541882
Dong, 2010, Identification of temporal and spatial variations of water quality in Sanya Bay, China by three-way principal component analysis, Environ. Earth Sci., 60, 1673, 10.1007/s12665-009-0301-4
Cid, 2011, Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid midwest of argentina, Anal. Chim. Acta, 705, 243, 10.1016/j.aca.2011.06.013
Panagakis, 2010, Non-negative multilinear principal component analysis of auditory temporal modulations for music genre classification, IEEE Trans. Audio Speech Lang. Process., 18, 576, 10.1109/TASL.2009.2036813
Hu, 2011, Incremental tensor subspace learning and its applications to foreground segmentation and tracking, Int. J. Comput. Vis., 91, 303, 10.1007/s11263-010-0399-6
Mujica, 2008, Multivariate statistics process control for dimensionality reduction in structural assessment, Mech. Syst. Signal Process., 22, 155, 10.1016/j.ymssp.2007.05.001
Wang, 2008, A comparative study of multilinear principal component analysis for face recognition, 1
Costantini, 2008, Higher order svd analysis for dynamic texture synthesis, IEEE Trans. Image Process., 17, 42, 10.1109/TIP.2007.910956
Acar, 2005, Modeling and multiway analysis of chatroom tensors, 256
Andersen, 2004, Structure-seeking multilinear methods for the analysis of fmri data, NeuroImage, 22, 728, 10.1016/j.neuroimage.2004.02.026
Baum, 2013, Enzyme activity measurement via spectral evolution profiling and parafac, Anal. Chim. Acta, 778, 1, 10.1016/j.aca.2013.03.029
Nomikos, 1994, Monitoring batch processes using multiway principal component analysis, AIChE J., 40, 1361, 10.1002/aic.690400809
Mørup, 2011, Applications of tensor (multiway array) factorizations and decompositions in data mining, Data Min. Knowl. Discov., 1, 24, 10.1002/widm.1
Kolda, 2009, Tensor decompositions and applications, SIAM Rev., 51, 455, 10.1137/07070111X
Sun, 2006, Window-based tensor analysis on high-dimensional and multi-aspect streams, vol. 6, 1076
Sun, 2006, Beyond streams and graphs: dynamic tensor analysis, 374
Sun, 2008, Incremental tensor analysis: theory and applications, ACM Trans. Knowl. Discov. Data, 2, 11, 10.1145/1409620.1409621
Lee, 2014, Online monitoring and interpretation of periodic diurnal and seasonal variations of indoor air pollutants in a subway station using parallel factor analysis (parafac), Energy Build., 68, 87, 10.1016/j.enbuild.2013.09.022
Tran, 2012, Video detection anomaly via low-rank and sparse decompositions, 17
Koutra, 2012, Tensorsplat: spotting latent anomalies in time, 144
Panisson, 2014, Mining concurrent topical activity in microblog streams, 3
Acar, 2007, Seizure recognition on epilepsy feature tensor, 4273
Renard, 2008, Improvement of target detection methods by multiway filtering, IEEE Trans. Geosci. Remote Sens., 46, 2407, 10.1109/TGRS.2008.918419
Wang, 2014, Discovering urban spatio-temporal structure from time-evolving traffic networks, 93
Chuang, 2009, Using MPCA of spectra model for fault detection in a hot strip mill, J. Mater. Process. Technol., 209, 4162, 10.1016/j.jmatprotec.2008.10.008
Prada, 2012, Three-way analysis of structural health monitoring data, Neurocomputing, 80, 119, 10.1016/j.neucom.2011.07.030
Khosravi, 2008, Multiway principal component analysis (mpca) for upstream/downstream classification of voltage sags gathered in distribution substations, 297
Ho, 2014, Limestone: high-throughput candidate phenotype generation via tensor factorization, J. Biomed. Inform., 52, 199, 10.1016/j.jbi.2014.07.001
Fanaee-T, 2015, Eigenevent: an algorithm for event detection from complex data streams in syndromic surveillance, Intell. Data Anal., 19, 10.3233/IDA-150734
Bai, 2013, A multiway model for predicting earthquake ground motion, 219
Mu, 2011, Empirical discriminative tensor analysis for crime forecasting, 293
Kosanovich, 1994, Multi-way PCA applied to an industrial batch process, vol. 2, 1294
Nomikos, 1995, Multivariate spc charts for monitoring batch processes, Technometrics, 37, 41, 10.1080/00401706.1995.10485888
Kourti, 1995, Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS, J. Process Control, 5, 277, 10.1016/0959-1524(95)00019-M
Chen, 2003, Three-way data analysis with time lagged window for on-line batch process monitoring, Korean J. Chem. Eng., 20, 1000, 10.1007/BF02706928
GUO, 2013, Mpca fault detection method based on multiblock statistics for uneven-length batch processes, J. Comput. Inf. Syst., 9, 7181
Wise, 2001, Application of parafac2 to fault detection and diagnosis in semiconductor etch, J. Chemom., 15, 285, 10.1002/cem.689
Wise, 1999, A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process, J. Chemom., 13, 379, 10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N
Zhifeng, 2007, Online supervision of penicillin cultivations based on rolling mpca, Chin. J. Chem. Eng., 15, 92, 10.1016/S1004-9541(07)60039-1
Hu, 2009, Batch process monitoring with tensor factorization, J. Process Control, 19, 288, 10.1016/j.jprocont.2008.03.003
Singh, 2009, Multi-way modeling of wastewater data for performance evaluation of sewage treatment plant-a case study, Chemom. Intell. Lab. Syst., 95, 18, 10.1016/j.chemolab.2008.07.013
Amigo, 2008, On-line parallel factor analysis. a step forward in the monitoring of bioprocesses in real time, Chemom. Intell. Lab. Syst., 92, 44, 10.1016/j.chemolab.2007.12.001
Mori, 2014, Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach, J. Process Control, 24, 57, 10.1016/j.jprocont.2013.10.017
Lee, 2003, On-line batch process monitoring using a consecutively updated multiway principal component analysis model, Comput. Chem. Eng., 27, 1903, 10.1016/S0098-1354(03)00151-0
Yoo, 2004, On-line monitoring of batch processes using multiway independent component analysis, Chemom. Intell. Lab. Syst., 71, 151, 10.1016/j.chemolab.2004.02.002
Gallagher, 1996, Application of multi-way principal components analysis to nuclear waste storage tank monitoring, Comput. Chem. Eng., 20, S739, 10.1016/0098-1354(96)00131-7
Urtubia, 2012, Detection of abnormal fermentations in wine process by multivariate statistics and pattern recognition techniques, J. Biotechnol., 159, 336, 10.1016/j.jbiotec.2011.09.031
Barbieri, 2002, A three-way principal factor analysis for assessing the time variability of freshwaters related to a municipal water supply, Chemom. Intell. Lab. Syst., 62, 89, 10.1016/S0169-7439(02)00007-2
Singh, 2006, Multi-way modeling of hydro-chemical data of an alluvial river system-a case study, Anal. Chim. Acta, 571, 248, 10.1016/j.aca.2006.04.080
Singh, 2007, Multi-way partial least squares modeling of water quality data, Anal. Chim. Acta, 584, 385, 10.1016/j.aca.2006.11.038
Engle, 2014, Three-way compositional analysis of water quality monitoring data, Environ. Ecol. Stat., 21, 565, 10.1007/s10651-013-0268-x
Singh, 2007, Exploring groundwater hydrochemistry of alluvial aquifers using multi-way modeling, Anal. Chim. Acta, 596, 171, 10.1016/j.aca.2007.06.001
Stanimirova, 2005, Modeling of environmental four-way data from air quality control, Chemom. Intell. Lab. Syst., 77, 115, 10.1016/j.chemolab.2004.11.005
Singh, 2006, Multi-way data analysis of soils irrigated with wastewater–a case study, Chemom. Intell. Lab. Syst., 83, 1, 10.1016/j.chemolab.2006.01.001
Andrade, 2007, 3-way characterization of soils by procrustes rotation, matrix-augmented principal components analysis and parallel factor analysis, Anal. Chim. Acta, 603, 20, 10.1016/j.aca.2007.09.043
Li, 2011, Robust tensor subspace learning for anomaly detection, Int. J. Mach. Learn. Cybern., 2, 89, 10.1007/s13042-011-0017-0
Zhao, 2013, Kernelization of tensor-based models for multiway data analysis: processing of multidimensional structured data, IEEE Signal Process. Mag., 30, 137, 10.1109/MSP.2013.2255334
Li, 2010, Infrared moving target detection and tracking based on tensor locality preserving projection, Infrared Phys. Technol., 53, 77, 10.1016/j.infrared.2009.09.009
Zhang, 2011, Visual tracking via dynamic tensor analysis with mean update, Neurocomputing, 74, 3277, 10.1016/j.neucom.2011.05.006
Li, 2011, Tensor-based covariance matrices for object tracking, 1681
Zhou, 2012, Higher-order SVD analysis for crowd density estimation, Comput. Vis. Image Underst., 116, 1014, 10.1016/j.cviu.2012.05.005
Kobayashi, 2009, Three-way auto-correlation approach to motion recognition, Pattern Recognit. Lett., 30, 212, 10.1016/j.patrec.2008.09.006
Araujo, 2014, Com2: fast automatic discovery of temporal (comet) communities, 271
Mao, 2014, Malspot: multi2 malicious network behavior patterns analysis, 1
Kim, 2009, Higher-order PCA for anomaly detection in large-scale networks, 85
Maruhashi, 2011, Multiaspectforensics: pattern mining on large-scale heterogeneous networks with tensor analysis, 203
Papalexakis, 2012, Parcube: sparse parallelizable tensor decompositions, 521
Kolda, 2008, Scalable tensor decompositions for multi-aspect data mining, 363
Bader, 2007, Temporal analysis of semantic graphs using asalsan, 33
Maruhashi, 2014, Multiaspectspotting: spotting anomalous behavior within count data using tensor, 474
Matsubara, 2012, Fast mining and forecasting of complex time-stamped events, 271
Fanaee-T, 2012, Event and anomaly detection using tucker3 decomposition, 8
Glass, 2010, Automatically identifying the sources of large internet events, 108
Peng, 2011, Temporal relation co-clustering on directional social network and author-topic evolution, Knowl. Inf. Syst., 26, 467, 10.1007/s10115-010-0289-9
Xu, 2015, Bayesian nonparametric models for multiway data analysis, IEEE Trans. Pattern Anal. Mach. Intell., 37, 475, 10.1109/TPAMI.2013.201
Papalexakis, 2014, Spotting misbehaviors in location-based social networks using tensors, 551
Gauvin, 2014, Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach, PLoS One, 9, e86028, 10.1371/journal.pone.0086028
Oliveira, 2013, Visualization of evolving social networks using actor-level and community-level trajectories, Expert Syst., 30, 306, 10.1111/exsy.12028
Chen, 2015, Fast and scalable multi-way analysis of massive neural data, IEEE Trans. Comput., 64, 707, 10.1109/TC.2013.2295806
Rosipal, 2009, Application of multi-way EEG decomposition for cognitive workload monitoring, 145
Miwakeichi, 2008, Decomposing EEG data into space-time-frequency components using parallel factor analysis and its relation with cerebral blood flow, 802
Mørup, 2006, Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG, NeuroImage, 29, 938, 10.1016/j.neuroimage.2005.08.005
Cong, 2013, Multi-domain feature extraction for small event-related potentials through nonnegative multi-way array decomposition from low dense array EEG, Int. J. Neural Syst., 23, 10.1142/S0129065713500068
Cong, 2012, Benefits of multi-domain feature of mismatch negativity extracted by non-negative tensor factorization from eeg collected by low-density array, Int. J. Neural Syst., 22, 10.1142/S0129065712500256
Beckmann, 2005, Tensorial extensions of independent component analysis for multisubject FMRI analysis, Neuroimage, 25, 294, 10.1016/j.neuroimage.2004.10.043
Bourennane, 2010, Improvement of classification for hyperspectral images based on tensor modeling, IEEE Geosci. Remote Sens. Lett., 7, 801, 10.1109/LGRS.2010.2048696
Renard, 2009, Dimensionality reduction based on tensor modeling for classification methods, IEEE Trans. Geosci. Remote Sens., 47, 1123, 10.1109/TGRS.2008.2008903
Zhang, 2008, Tensor methods for hyperspectral data analysis: a space object material identification study, J. Opt. Soc. Am. A, 25, 3001, 10.1364/JOSAA.25.003001
Zhang, 2011, A multifeature tensor for remote-sensing target recognition, IEEE Geosci. Remote Sens. Lett., 8, 374, 10.1109/LGRS.2010.2077272
Hemissi, 2013, Multi-spectro-temporal analysis of hyperspectral imagery based on 3-d spectral modeling and multilinear algebra, IEEE Trans. Geosci. Remote Sens., 51, 199, 10.1109/TGRS.2012.2200486
Shi, 2014, Stensr: spatio-temporal tensor streams for anomaly detection and pattern discovery, Knowl. Inf. Syst., 1
Hayashi, 2010, Exponential family tensor factorization for missing-values prediction and anomaly detection, 216
Prada, 2012, Dimensionality reduction for damage detection in engineering structures, Int. J. Mod. Phys. B, 26, 10.1142/S0217979212460046
Karssen, 2009, Fall detection in walking robots by multi-way principal component analysis, Robotica, 27, 249, 10.1017/S0263574708004645
Fanaee-T, 2015, Event detectionfrom traffic tensors: a hybrid model, Neurocomputing
Tan, 2013, Traffic volume data outlier recovery via tensor model, Math. Probl. Eng., 2013, 10.1155/2013/164810
Tan, 2013, A tensor-based method for missing traffic data completion, Transp. Res. Part C: Emerg. Technol., 28, 15, 10.1016/j.trc.2012.12.007
Hall, 2012, Tensor-based temporal behavior analysis in pain medicine, vol. 1, 626
Li, 2010, Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data, 438
Fanaee-T, 2013, An eigenvector-based hotspot detection, 251
Ramanathan, 2008
Leibovici, 2010, Spatio-temporal multiway decomposition using principal tensor analysis on k-modes: the r package ptak, J. Stat. Softw., 34, 1, 10.18637/jss.v034.i10
Leibovici, 2007, A method to classify ecoclimatic arid and semiarid zones in circum-Saharan Africa using monthly dynamics of multiple indicators, IEEE Trans. Geosci. Remote Sens., 45, 4000, 10.1109/TGRS.2007.908878
Unkel, 2011, Independent component analysis for three-way data with an application from atmospheric science, J. Agric. Biol. Environ. Stat., 16, 319, 10.1007/s13253-011-0055-9
Marklund, 2014, Development and comparison of spectral methods for passive acoustic anomaly detection in nuclear power plants, Appl. Acoust., 83, 100, 10.1016/j.apacoust.2014.03.014
Mesgarani, 2014, Mechanisms of noise robust representation of speech in primary auditory cortex, Proc. Natl. Acad. Sci. USA, 111, 6792, 10.1073/pnas.1318017111
Mesgarani, 2006, Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations, IEEE Trans. Audio Speech Lang. Process., 14, 920, 10.1109/TSA.2005.858055
Nomikos, 1995, Multi-way partial least squares in monitoring batch processes, Chemom. Intell. Lab. Syst., 30, 97, 10.1016/0169-7439(95)00043-7
Nazarpour, 2006, Parallel space-time-frequency decomposition of EEG signals for brain computer interfacing
Villez, 2008, Combining multiway principal component analysis (MPCA) and clustering for efficient data mining of historical data sets of sbr processes., Water Sci. Technol., 57, 10.2166/wst.2008.143
Tao, 2005, Supervised tensor learning, 8
Cai, 2006, Learning with Tensor Representation
Kotsia, 2012, Higher rank support tensor machines for visual recognition, Pattern Recognit., 45, 4192, 10.1016/j.patcog.2012.04.033
Yan, 2007, Multilinear discriminant analysis for face recognition, IEEE Trans. Image Process., 16, 212, 10.1109/TIP.2006.884929
Rendle, 2010, Factorization machines, 995
Lu, 2011, A survey of multilinear subspace learning for tensor data, Pattern Recognit., 44, 1540, 10.1016/j.patcog.2011.01.004
Wold, 1987, Multi-way principal components-and PLS-analysis, J. Chemom., 1, 41, 10.1002/cem.1180010107
Chen, 2002, On-line batch process monitoring using dynamic PCA and dynamic PLS models, Chem. Eng. Sci., 57, 63, 10.1016/S0009-2509(01)00366-9
Marjanovic, 2006, Real-time monitoring of an industrial batch process, Comput. Chem. Eng., 30, 1476, 10.1016/j.compchemeng.2006.05.040
Li, 2006, On-line fault detection using svm-based dynamic MPLS for batch processes, Chin. J. Chem. Eng., 14, 754, 10.1016/S1004-9541(07)60007-X
Guo, 2012, Tensor learning for regression, IEEE Trans. Image Process, 21, 816, 10.1109/TIP.2011.2165291
Zhou, 2013, Tensor regression with applications in neuroimaging data analysis, J. Am. Stat. Assoc., 108, 540, 10.1080/01621459.2013.776499
Zhu, 2014, A general framework for predictive tensor modeling with domain knowledge, Data Min. Knowl. Discov., 1
Rogers, 2013, Multilinear dynamical systems for tensor time series, 2634
Bahadori, 2014, Fast multivariate spatio-temporal analysis via low rank tensor learning, 3491
Yu, 2012, Multiway discrete hidden markov model-based approach for dynamic batch process monitoring and fault classification, AIChE J., 58, 2714, 10.1002/aic.12794
Thai-Nghe, 2011, Factorization models for forecasting student performance, 11
Thai-Nghe, 2011
Kouchaki, 2013, Tensor based singular spectrum analysis for nonstationary source separation, 1
Lee, 2003, Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis, Biotechnol. Bioeng., 82, 489, 10.1002/bit.10589
Yoo, 2004, Application of multiway ICA for on-line process monitoring of a sequencing batch reactor, Water Res., 38, 1715, 10.1016/j.watres.2004.01.006
Tian, 2009, Multiway kernel independent component analysis based on feature samples for batch process monitoring, Neurocomputing, 72, 1584, 10.1016/j.neucom.2008.09.003
Fanaee-T, 2015, Multi-aspect-streaming tensor analysis, Knowl.-Based Syst., 89, 332, 10.1016/j.knosys.2015.07.013
Majid, 2011, Aluminium process fault detection by multiway principal component analysis, Control Eng. Pract., 19, 367, 10.1016/j.conengprac.2010.12.005
Gao, 2012, On-line Monitoring of Batch Process with Multiway PCA/ICA, 239
Stefanov, 2003, Hierarchical multivariate analysis of cockle phenomena, J. Chemom., 17, 550, 10.1002/cem.825
Tucker, 1966, Some mathematical notes on three-mode factor analysis, Psychometrika, 31, 279, 10.1007/BF02289464
R.A. Harshman, Foundations of the PARAFAC Procedure: Models and Conditions for an “Explanatory” Multi-Modal Factor Analysis, UCLA Working Papers in Phonetics, vol. 16(1), 1970, p. 84.
Carroll, 1970, Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition, Psychometrika, 35, 283, 10.1007/BF02310791
Chen, 2014, On optimal low rank tucker approximation for tensors: the case for an adjustable core size, J. Global Optim., 1
De Lathauwer, 2000, A multilinear singular value decomposition, SIAM J. Matrix Anal Appl., 21, 1253, 10.1137/S0895479896305696
Kolda, 2009, Tensor decompositions and application, SIAM Rev., 51, 455, 10.1137/07070111X
Carroll, 1989, Fitting of the latent class model via iteratively reweighted least squares candecomp with nonnegativity constraints, 463
Bader, 2008, Discussion tracking in enron email using parafac, 147
Kiers, 1993, An alternating least squares algorithm for parafac2 and three-way dedicom, Comput. Stat. Data Anal., 16, 103, 10.1016/0167-9473(93)90247-Q
Chi, 2012, On tensors, sparsity, and nonnegative factorizations, SIAM J. Matrix Anal. Appl., 33, 1272, 10.1137/110859063
Lu, 2006, Multilinear principal component analysis of tensor objects for recognition, vol. 2, 776
Lv, 2014, Fault detection for batch processes based on segmentation mpca, vol. 1030, 1701
Peng, 2014, Ascs online fault detection and isolation based on an improved mpca, Chin. J. Mech. Eng., 27, 1047, 10.3901/CJME.2014.0529.106
Luo, 2014, Batch process monitoring with gtucker2 model, Ind. Eng. Chem. Res., 53, 15101, 10.1021/ie5015102
Kim, 2007, Nonnegative tucker decomposition, 1
Mørup, 2008, Algorithms for sparse nonnegative tucker decompositions, Neural Comput., 20, 2112, 10.1162/neco.2008.11-06-407
Süsstrunk, 2006, Dynamic texture analysis and synthesis using tensor decomposition, vol. 4292, 1161
Selli, 2004, Application of multi-way models to the time-resolved fluorescence of polycyclic aromatic hydrocarbons mixtures in water, Water Res., 38, 2269, 10.1016/j.watres.2004.01.042
Harshman, 1978, Models for analysis of asymmetrical relationships among n objects or stimuli
Bader, 2006, vol. 119
Chu, 2009, Probabilistic models for incomplete multi-dimensional arrays, vol. 5, 89
Hayashi, 2012, Exponential family tensor factorization: an online extension and applications, Knowl. Inf. Syst., 33, 57, 10.1007/s10115-012-0517-6
Mørup, 2009, Automatic relevance determination for multi-way models, J. Chemom., 23, 352, 10.1002/cem.1223
Zhao, 2015, Bayesian cp factorization of incomplete tensors with automatic rank determination, IEEE Trans Pattern Anal. Mach. Intell., PP
Porteous, 2008, Multi-hdp: a nonparametric Bayesian model for tensor factorization, 1487
Tao, 2008, Bayesian tensor approach for 3-d face modeling, IEEE Trans. Circuits Syst. Video Technol., 18, 1397, 10.1109/TCSVT.2008.2002825
Xiong, 2010, Temporal collaborative filtering with Bayesian probabilistic tensor factorization., vol. 10, 211
Rai, 2014, Scalable Bayesian low-rank decomposition of incomplete multiway tensors, 1800
Zhou, 2015, Bayesian factorizations of big sparse tensors, J. Am. Stat. Assoc., 110, 1562, 10.1080/01621459.2014.983233
He, 2005, Tensor subspace analysis, 499
Dai, 2006, Tensor embedding methods, vol. 21, 330
Luo, 2014, Tensor global-local preserving projections for batch process monitoring, Ind. Eng. Chem. Res., 53, 10166, 10.1021/ie403973w
Zhang, 2007, Fault detection of nonlinear processes using multiway kernel independent component analysis, Ind. Eng. Chem. Res., 46, 7780, 10.1021/ie070381q
Hu, 2008, Multivariate statistical process control based on multiway locality preserving projections, J. Process Control, 18, 797, 10.1016/j.jprocont.2007.11.002
Westerhuis, 1999, Comparing alternative approaches for multivariate statistical analysis of batch process data, J. Chemom., 13, 397, 10.1002/(SICI)1099-128X(199905/08)13:3/4<397::AID-CEM559>3.0.CO;2-I
MacGregor, 2001, Multivariate image analysis for process monitoring and control, 17
Jackson, 1993, Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches, Ecology, 2204, 10.2307/1939574
Efron, 1983, Estimating the error rate of a prediction rule: improvement on cross-validation, J. Am. Stat. Assoc., 78, 316, 10.1080/01621459.1983.10477973
Louwerse, 1999, Cross-validation of multiway component models, J. Chemom., 13, 491, 10.1002/(SICI)1099-128X(199909/10)13:5<491::AID-CEM537>3.0.CO;2-2
Bro, 2003, A new efficient method for determining the number of components in parafac models, J Chemom., 17, 274, 10.1002/cem.801
Timmerman, 2000, Three-mode principal components analysis: choosing the numbers of components and sensitivity to local optima, Br. J. Math. Stat. Psychol., 53, 1, 10.1348/000711000159132
Kiers, 2003, A fast method for choosing the numbers of components in tucker3 analysis, Br. J. Math. Stat. Psychol., 56, 119, 10.1348/000711003321645386
Andersson, 2000, The n-way toolbox for matlab, Chemom. Intell. Lab. Syst., 52, 1, 10.1016/S0169-7439(00)00071-X
Harshman, 1984, An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques, 602
Ceulemans, 2006, Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method, Br. J. Math. Stat. Psychol., 59, 133, 10.1348/000711005X64817
Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Autom. Control, 19, 716, 10.1109/TAC.1974.1100705
Schwarz, 1978, Estimating the dimension of a model, Ann. Stat., 6, 461, 10.1214/aos/1176344136
Karami, 2010, Best rank-r tensor selection using genetic algorithm for better noise reduction and compression of hyperspectral images, 169
Håstad, 1990, Tensor rank is np-complete, J. Algorithms, 11, 644, 10.1016/0196-6774(90)90014-6
Riu, 2003, Jack-knife technique for outlier detection and estimation of standard errors in parafac models, Chemom. Intell. Lab. Syst., 65, 35, 10.1016/S0169-7439(02)00090-4
P.M. Kroonenberg, et al., Three-mode Component and Scaling Models. Wiley StatsRef: Statistics Reference Online. (2015), 1–17. URL: http://dx.doi.org/10.1002/9781118445112.stat06459.pub2.
Kroonenberg, 2008
Kiers, 2001, Three-way component analysis: principles and illustrative application, Psychol. Methods, 6, 84, 10.1037/1082-989X.6.1.84
Brockmeier, 2013, A greedy algorithm for model selection of tensor decompositions., 6113
Rashid, 2012, Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach, Ind. Eng. Chem. Res., 51, 10910, 10.1021/ie301002h
Karami, 2011, Noise reduction of hyperspectral images using kernel non-negative tucker decomposition, IEEE J. Sel. Top. Signal Process., 5, 487, 10.1109/JSTSP.2011.2132692
Kourti, 2003, Abnormal situation detection, three-way data and projection methods; robust data archiving and modeling for industrial applications, Annu. Rev. Control, 27, 131, 10.1016/j.arcontrol.2003.10.004
Lu, 2004, PCA-based modeling and on-line monitoring strategy for uneven-length batch processes, Ind. Eng. Chem. Res., 43, 3343, 10.1021/ie030736f
Kolda, 2005, Higher-order web link analysis using multilinear algebra, 8
Bader, 2007, Efficient matlab computations with sparse and factored tensors, SIAM J. Sci. Comput., 30, 205, 10.1137/060676489
Allen, 2012, Sparse higher-order principal components analysis, 27
Baskaran, 2012, Efficient and scalable computations with sparse tensors, 1
Zou, 2015, Gputensor: efficient tensor factorization for context-aware recommendations, Inf. Sci., 299, 159, 10.1016/j.ins.2014.12.004
Kang, 2012, Gigatensor: scaling tensor analysis up by 100 times-algorithms and discoveries, 316
Sidiropoulos, 2014, Parallel randomly compressed cubes: a scalable distributed architecture for big tensor decomposition, IEEE Signal Process Mag., 31, 57, 10.1109/MSP.2014.2329196
Inah, 2015, Haten2: Billion-scale tensor decompositions
Papadimitriou, 2006, Optimal multi-scale patterns in time series streams, 647
Li, 2007, Robust visual tracking based on incremental tensor subspace learning, 1
Bader, 2008, Scenario discovery using nonnegative tensor factorization, 791
Acar, 2011, All-at-once Optimization for Coupled Matrix and Tensor Factorizations
Zheng, 2012, Towards mobile intelligence: learning from GPS history data for collaborative recommendation, Artif. Intell., 184, 17, 10.1016/j.artint.2012.02.002
Ermiş, 2015, Link prediction in heterogeneous data via generalized coupled tensor factorization, Data Min. Knowl. Discov., 29, 203, 10.1007/s10618-013-0341-y
Becker, 2012, Tensor-based preprocessing of combined eeg/meg data, 275
Cichocki, 2013, Tensor Decompositions: A New Concept in Brain Data Analysis?
Swinnen, 2014, Incorporating higher dimensionality in joint decomposition of EEG and FMRI, 121
Khan, 2014, Bayesian multi-view tensor factorization, 656
Acar, 2013, Understanding data fusion within the framework of coupled matrix and tensor factorizations, Chemom. Intell. Lab. Syst., 129, 53, 10.1016/j.chemolab.2013.06.006
Lin, 2009, Metafac: community discovery via relational hypergraph factorization, 527
Yang, 2011, Like like alike: joint friendship and interest propagation in social networks, 537
Acar, 2013, Structure-revealing data fusion model with applications in metabolomics, 6023
E. Acar, Data Fusion Based on Coupled Matrix/Tensor Factorizations, 2015, (http://www.models.life.ku.dk/~acare/DataFusion).
de Almeida, 2014, Distributed large-scale tensor decomposition, 26
Hu, 2015, Scalable Bayesian non-negative tensor factorization for massive count data, 53