Tensile properties and fracture characteristics of ECAP-processed Al and Al-Cu alloys

Metals and Materials International - Tập 16 - Trang 709-716 - 2010
Mohamed Ibrahim Abd El Aal1,2, Nahed El Mahallawy3, Farouk A. Shehata1, Mohamed Abd El Hameed1, Eun Yoo Yoon2, Jung Hwan Lee4, Hyoung Seop Kim2
1Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt
2Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology), Pohang-si, Gyeongbuk, Korea
3Faculty of Engineering and Material Science, German University in Cairo, Cairo, Egypt
4Korea Institute of Materials Science (KIMS), Changwon-si, Gyeongnam, Korea

Tóm tắt

In the present paper, billets of pure Al, and cast-homogenized Al-2 wt.%, 3 wt.%, and 5 wt.% Cu alloys were successfully processed by equal channel angular pressing (ECAP) up to 10 passes without fracture at room temperature using a die with a channel angle of 110°. Giant strains imposed on workpieces lead to extreme dislocation densities, microstructural refinement, and finally ultrafine grained materials. Tensile tests were employed to examine the fracture modes and fracture surface morphologies of the ECAP-processed Al and Al-Cu alloy samples. In particular, the effects of the number of ECAP passes and the Cu content were investigated.

Tài liệu tham khảo

H. S. Kim, Scripta mater. 39, 1057 (1998).

H. S. Kim, C. Suryanarayana, S.-J. Kim, and B. S. Chun, Powder Metall. 41, 217 (1998).

H. S. Kim and Y. Estrin, Appl. Phys. Lett. 79, 4115 (2001).

R. Z. Valiev, R. K. Islamgalive, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, and M. Goto, Met. Mater. Int. 14, 171 (2008).

Y. T. Zhu, T. C. Lowe, and T. G. Langdon, Scripta mater. 51, 825 (2004).

V. M. Segal, Mater. Sci. Eng. A 197, 157 (1995).

Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, Scripta mater. 35, 143 (1996).

R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

B. S. Moon, H. S. Kim, and S. I. Hong, Scripta mater. 46, 131 (2002).

S. C. Baik, Y. Estrin, R. J. Hellmig, H. T. Jeong, H.-G. Brokmeier, and H. S. Kim, Zeit. Metallkd. 94, 1189 (2003).

Y. G. Kim, B. C. Hwang, S. H. Lee, C. W. Lee, and D. H. Shin, J. Kor. Inst. Met. & Mater. 46, 545 (2008).

Y. G. Kim, Y. G. Ko, D. H. Shin, C. S. Lee, and S. H. Lee, J. Kor. Inst. Met. & Mater. 46, 563 (2008).

Y. G. Kim, Y. G. Ko, D. H. Shin, and S. H. Lee, J. Kor. Inst. Met. & Mater. 47, 397 (2009).

S. C. Yoon and H. S. Kim, J. Kor. Inst. Met. & Mater. 47, 699 (2009).

S. C. Yoon, P. Quang, and H. S. Kim, J. Kor. Inst. Met. & Mater. 46, 144 (2008).

M. Murayama, Z. Horita, and K. Hono, Acta mater. 49, 21 (2001).

Z. F. Zhang, S. D. Wu, Y. J. Li, S. M. Liu, and Z. G. Wang, Mater. Sci. Eng. A 412, 279 (2005).

J. Wang, S. Kang, and H. Kim, Mater. Sci. Eng. A 383, 356 (2004).

D. R. Fang, Z. F. Zhang, S. D. Wu, C. X. Huanga, H. Zhang, N. Q. Zha, and J. J. Li, Mater. Sci. Eng. A 426, 305 (2006).

E. Prados, V. Sordi, and M. Ferrante, Mater. Sci. Eng. A 503, 68 (2009).

N. El Mahallawy, F. A. Shehata, M. A. El Hameed, and M. A. El Aal, Mater. Sci. Eng. A 517, 46 (2009).

A. Sivaraman and U. Chakkingal, J. Mater. Process. Technol. 202, 543 (2008).

X. X. Chang, L. Z. Yi, L. Y. Tao, D. Peng, and Z. S. Min, Trans. Nonferrous Met. Soc. China 108, 1047 (2008).

Z. Horita, T. Fujinami, M. Nemoto, and T. G. Langdon, J. Mater. Process. Technol. 117, 288 (2001).

M. Wang and A. Shan, J. Alloy. Compd. 455, L10 (2008).

J. W. Wang, Q. Q. Duan, C. X. Huanga, S. D. Wu, and Z. F. Zhang, Mater. Sci. Eng. A 496, 409 (2008).

D. R. Fang, Q. Q. Duan, N. Q. Zha, J. J. Li, S. D. Wu, and Z. F. Zhang, Mater. Sci. Eng. A 459, 137 (2007).

O. Saray and G. Purcek, J. Mater. Process. Technol. 209, 2483 (2009).

Y. G. Ko, D. H. Shin, K. T. Park, and C. S. Lee, Scripta mater. 54, 1785 (2006).

G. Purcek, O. Saray, I. Karaman, and T. Kucukomeroglue, Mater. Sci. Eng. A 490, 403 (2008).

S. K. Panigrahi and R. Jayaganthan, Mater. Sci. Eng. A 480, 299 (2008).