Tensile behaviour of CFRP-glass adhesively bonded connections: double-lap joint tests and numerical modelling

Engineering Structures - Tập 260 - Trang 114212 - 2022
Jorge Rocha1, José Sena-Cruz1, Eduardo Pereira1
1ISISE, IB-S, University of Minho, School of Engineering, Campus de Azurém, 4800-058 Guimarães, Portugal

Tài liệu tham khảo

Correia, 2011, Post-cracking strength and ductility of glass-GFRP composite beams, Compos Struct, 93, 2299, 10.1016/j.compstruct.2011.03.018 Valarinho, 2013, Experimental study on the flexural behaviour of multi-span transparent glass-GFRP composite beams, Constr Build Mater, 49, 1041, 10.1016/j.conbuildmat.2012.11.024 Balan B, Achintha M. Experimental and Numerical Investigation of Float Glass-GFRP Hybrid Beams. In: Belis, Bos, Louter, editors. Challeging Glas. 5 - Conf. Archit. Struct. Appl. Glas., vol. 97, Ghent: 2016, p. 281–96. https://doi.org/10.2514/6.2009-5462. Biolzi, 2016, Static and dynamic response of progressively damaged ionoplast laminated glass beams, Compos Struct, 157, 337, 10.1016/j.compstruct.2016.09.004 Cruz P, Pequeno J. Structural Timber-Glass Adhesive Bonding. Challenging Glas., 2008, p. 205–14. Cruz P, Pequeno J. Timber-Glass Composite Beams: Mechanical Behaviour & Architectural Solutions. Challenging Glas., 2008, p. 439–48. Belis, 2009, Experimental failure investigation of a hybrid glasssteel beam, Eng Fail Anal, 16, 1163, 10.1016/j.engfailanal.2008.07.011 Bos F, Veer F, Hobbelman G, Louter P. Stainless steel reinforced and post-tensioned glass beams. ICEM12- 12th Int. Conf. Exp. Mech., Bari, Italy: 2004, p. 1–9. Louter, 2012, Structural response of SG-laminated reinforced glass beams; experimental investigations on the effects of glass type, reinforcement percentage and beam size, Eng Struct, 36, 292, 10.1016/j.engstruct.2011.12.016 Louter, 2014, Exploratory experimental investigations on post-tensioned structural glass beams, J Facade Des Eng, 2, 3, 10.3233/FDE-130012 Louter C, Cupac J, Debonnaire M. Structural glass beams prestressed by externally bonded tendons. Glas. Glob. Conf. Proc., Philadelphia, EUA: GlassCon Global; 2014, p. 450–9. Palumbo M. A New Roof for the XIIIth Century ‘Loggia de Vicari’ (Arquà Petrarca – PD Italy) Based on Structural Glass Trusses: A Case Study. Glas. Process. Days, Tempere, Finland; 2005. Neto, 2015, Glass beams reinforced with GFRP laminates: Experimental tests and numerical modelling using a discrete strong discontinuity approach, Eng Struct, 99, 253, 10.1016/j.engstruct.2015.04.002 Valarinho, 2017, Numerical simulation of the flexural behaviour of composite glass-GFRP beams using smeared crack models, Compos Part B Eng, 110, 336, 10.1016/j.compositesb.2016.10.035 Achintha, 2017, Characterisation of the mechanical behaviour of annealed glass – GFRP hybrid beams, Constr Build Mater, 147, 174, 10.1016/j.conbuildmat.2017.04.086 Keller, 2005, System ductility and redundancy of FRP beam structures with ductile adhesive joints, Compos Part B Eng, 36, 586, 10.1016/j.compositesb.2005.05.001 Machalická, 2017, Adhesive joints in glass structures: effects of various materials in the connection, thickness of the adhesive layer, and ageing, Int J Adhes Adhes, 72, 10, 10.1016/j.ijadhadh.2016.09.007 Louter, 2012, Durability of SG-laminated reinforced glass beams: effects of temperature, thermal cycling, humidity and load-duration, Constr Build Mater, 27, 280, 10.1016/j.conbuildmat.2011.07.046 Nhamoinesu S, Overend M. The mechanical performance of adhesives for a steel-glass composite façade system. Challenging Glas. 3 Conf. Archit. Struct. Appl. Glas. CGC 2012, Delft, Netherlands; 2012, p. 293–306. https://doi.org/10.3233/978-1-61499-061-1-293. Speranzini, 2016, Experimental analysis of adhesion phenomena in fibre-reinforced glass structures, Compos Part B Eng, 101, 155, 10.1016/j.compositesb.2016.06.074 Bedon C, Machalická K, Eliášová M, Vokáč M. Numerical modelling of adhesive connections including cohesive damage. Challenging Glas. 6 Conf. Archit. Struct. Appl. Glas. CGC 2018 - Proc., 2018, p. 309–20. https://doi.org/10.7480/cgc.6.2155. Speranzini, 2014, The technique of digital image correlation to identify defects in glass structures, Struct Control Heal Monit, 1015, 10.1002/stc.1629 GOM. Correlate Software and Online Documentation. Rev.121188; 2019. Simulia. ABAQUS computer software and Online Documentation. v6.12; 2012. ISO. Plastics - Determination of tensile properties - Part 5: Test conditions for unidirectional fibre-reinforced plastic composites. 527-5, Genève, Switzerland: International Organization for Standardization; 2009, p. 11. SIKA. Technical Data Sheet SikaForce ® -7710 L100; 2008. SIKA. Technical Data Sheet Sikadur®-330; 2017. 3M. Technical Data Sheet 3MTM Scotch-WeldTM EPXTM Epoxy Adhesive DP490; 1996. ISO. Plastics – Determination of tensile properties – Part 2: Test conditions for moulding and extrusion plastics. 527-2, Genève, Switzerland: International Organization for Standardization; 2012, p. 5. ISO. Plastics – Determination of tensile properties – Part 1: General principles. 527-1, Genève, Switzerland: International Organization for Standardization; 2006, p. 13. ISO. Glass in building — Determination of the bending strength of glass — Part 3: Test with specimen supported at two points (four point bending). 1288-3, Genève, Switzerland: International Organization for Standardization; 2016. Machalická, 2019, Structural behavior of double-lap shear adhesive joints with metal substrates under humid conditions, Int J Mech Mater Des, 15, 61, 10.1007/s10999-018-9404-y Belis J, Van Hulle A, Out B, Bos F, Callewaert D, Poulis H. Broad screening of adhesives for glass-metal bonds. Proc. Glas. Perform. Days 2011, Tampere, Finlandia: 2011, p. 286–9. Omairey, 2021, Defects and uncertainties of adhesively bonded composite joints, SN Appl Sci, 3, 10.1007/s42452-021-04753-8 Feldmann M, Kasper R. Guidance for European Structural Design of Glass Components. Luxembourg; 2014. https://doi.org/10.2788/5523. Rodrigues, 2017, Caracterização do comportamento do adesivo estrutural SikaForce 7710, Universidade de Coimbra Haghani, 2012, A new design model for adhesive joints used to bond FRP laminates to steel beams: Part B: Experimental verification, Constr Build Mater, 30, 686, 10.1016/j.conbuildmat.2011.12.005 Sena-Cruz, 2005 Focacci, 2000, Local Bond-Slip Relationship for FRP Reinforcement in Concrete, J Compos Constr, 4, 24, 10.1061/(ASCE)1090-0268(2000)4:1(24) Russo, 1990, Analytical Solution for Bond-SLip of Reinforcing Bars in R, C. Joints. J Struct Eng, 116, 336, 10.1061/(ASCE)0733-9445(1990)116:2(336) Cruz, 2004, Modeling of bond between near-surface mounted CFRP laminate strips and concrete, Comput Struct, 82, 1513, 10.1016/j.compstruc.2004.03.047 Cunha, 2010, Pullout behavior of steel fibers in self-compacting concrete, J Mater Civ Eng, 22, 1, 10.1061/(ASCE)MT.1943-5533.0000001 Biscaia, 2013, Linear and nonlinear analysis of bond-slip models for interfaces between FRP composites and concrete, Compos Part B, 45, 1554, 10.1016/j.compositesb.2012.08.011 Biscaia, 2015, A new discrete method to model unidirectional FRP-to-parent material bonded joints subjected to mechanical loads, Compos Struct, 121, 280, 10.1016/j.compstruct.2014.10.036 Fernandes P. Bond behaviour of NSM CFRP-concrete systems: durability and quality control. Universdidade do Minho; 2016. Ko, 2014, Development of a simplified bond stress – slip model for bonded FRP – concrete interfaces, Constr Build Mater, 68, 142, 10.1016/j.conbuildmat.2014.06.037 Dimande, 2003