Tenascin-W is a better cancer biomarker than tenascin-C for most human solid tumors
Tóm tắt
Tenascins are large glycoproteins found in the extracellular matrix of many embryonic and adult tissues. Tenascin-C is a well-studied biomarker known for its high overexpression in the stroma of most solid cancers. Tenascin-W, the least studied member of the family, is highly expressed in the stroma of colon and breast tumors and in gliomas, but not in the corresponding normal tissues. Other solid tumors have not been analyzed. The present study was undertaken to determine whether tenascin-W could serve as a cancer-specific extracellular matrix protein in a broad range of solid tumors. We analyzed the expression of tenascin-W and tenascin-C by immunoblotting and by immunohistochemistry on multiple frozen tissue microarrays of carcinomas of the pancreas, kidney and lung as well as melanomas and compared them to healthy tissues. From all healthy adult organs tested, only liver and spleen showed detectable levels of tenascin-W, suggesting that tenascin-W is absent from most human adult organs under normal, non-pathological conditions. In contrast, tenascin-W was detectable in the majority of melanomas and their metastases, as well as in pancreas, kidney, and lung carcinomas. Comparing lung tumor samples and matching control tissues for each patient revealed a clear overexpression of tenascin-W in tumor tissues. Although the number of samples examined is too small to draw statistically significant conclusions, there seems to be a tendency for increased tenascin-W expression in higher grade tumors. Interestingly, in most tumor types, tenascin-W is also expressed in close proximity to blood vessels, as shown by CD31 co-staining of the samples. The present study extends the tumor biomarker potential of tenascin-W to a broad range of solid tumors and shows its accessibility from the blood stream for potential therapeutic strategies.
Tài liệu tham khảo
Friedl P, Alexander S: Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011, 147: 992-1009. 10.1016/j.cell.2011.11.016.
Brellier F, Chiquet-Ehrismann R: How do tenascins influence the birth and life of a malignant cell?. J Cell Mol Med. 2012, 16: 32-40. 10.1111/j.1582-4934.2011.01360.x.
Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.
Bissell m, Hines WC: Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011, 17: 320-329. 10.1038/nm.2328.
Chiquet-Ehrismann R, Tucker RP: Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol. 2011, 3: a004960-10.1101/cshperspect.a004960.
Martina e, Chiquet-Ehrismann R, Brellier F: Tenascin-W: an extracellular matrix protein associated with osteogenesis and cancer. Int J Biochem Cell Biol. 2010, 42: 1412-1415. 10.1016/j.biocel.2010.06.004.
Chiquet-Ehrismann R, Chiquet M: Tenascins: regulation and putative functions during pathological stress. J Pathol. 2003, 200: 488-499. 10.1002/path.1415.
Midwood KS, Orend G: The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. 2009, 3: 287-310. 10.1007/s12079-009-0075-1.
Mackie EJ, Chiquet-Ehrismann R, Pearson CA, Inaguma Y, Taya K, Kawarada Y, Sakakura T: Tenascin is a stromal marker for epithelial malignancy in the mammary gland. Proc Natl Acad Sci U S A. 1987, 84: 4621-4625. 10.1073/pnas.84.13.4621.
Orend G, Chiquet-Ehrismann R: Tenascin-C induced signaling in cancer. Cancer Lett. 2006, 244: 143-163. 10.1016/j.canlet.2006.02.017.
Midwood KS, Hussenet T, Langlois B, Orend G: Advances in tenascin-C biology. Cellular and molecular life sciences. CMLS. 2011, 68: 3175-3199. 10.1007/s00018-011-0783-6.
Schliemann S, Wiedmer A, Pedretti M, Szczepanowski M, Klapper W, Neri D: Three clinical-stage tumor targeting antibodies reveal differential expression of oncofetal fibronectin and tenascin-C isoforms in human lymphoma. Leuk Res. 2009, 33: 1718-1722. 10.1016/j.leukres.2009.06.025.
Steiner M, Neri D: Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin Cancer Res. 2011, 17: 6406-6416. 10.1158/1078-0432.CCR-11-0483.
Reardon DA, Zalutsky MR, Bigner DD: Anti-tenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev Anticancer Ther. 2007, 7: 675-687. 10.1586/14737140.7.5.675.
Ko HY, Choi KJ, Lee CH, Kim S: A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin alphavbeta3 and tenascin-C proteins. Biomaterials. 2011, 32: 1130-1138. 10.1016/j.biomaterials.2010.10.034.
Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J, Borkowski S, Hilger CS, Cook G, Warren S, Schmidt PG: Tumor targeting by an aptamer. J Nuclear Med. 2006, 47: 668-678.
Degen M, Brellier F, Kain R, Ruiz C, Terracciano L, Orend G, Chiquet-Ehrismann R: Tenascin-W is a novel marker for activated tumor stroma in low-grade human breast cancer and influences cell behavior. Cancer Res. 2007, 67: 9169-9179. 10.1158/0008-5472.CAN-07-0666.
Degen M, Brellier F, Schenk S, Driscoll R, Zaman K, Stupp R, Tornillo L, Terracciano L, Chiquet-Ehrismann R, Ruegg C, Seelentag W: Tenascin-W, a new marker of cancer stroma, is elevated in sera of colon and breast cancer patients. Int J Cancer. 2008, 122: 2454-2461. 10.1002/ijc.23417.
Martina E, Degen M, Ruegg C, Merlo A, Lino MM, Chiquet-Ehrismann R, Brellier F: Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro. FASEB J. 2010, 24: 778-787. 10.1096/fj.09-140491.
Leprini A, Querze G, Zardi L: Tenascin isoforms: possible targets for diagnosis and therapy of cancer and mechanisms regulating their expression. Perspect Dev Neurobiol. 1994, 2: 117-123.
Schenk S, Bruckner-Tuderman L, Chiquet-Ehrismann R: Dermo-epidermal separation is associated with induced tenascin expression in human skin. Br J Dermatol. 1995, 133: 13-22.
Scherberich A, Tucker RP, Samandari E, Brown-Luedi M, Martin D, Chiquet-Ehrismann R: Murine tenascin-W: a novel mammalian tenascin expressed in kidney and at sites of bone and smooth muscle development. J Cell Sci. 2004, 117: 571-581. 10.1242/jcs.00867.
Galler K, Junker K, Franz M, Hentschel J, Richter P, Gajda M, Göhlert A, von Eggeling F, Heller R, Giavazzi R, Neri D, Kosmehl H, Wunderlich H, Berndt A: Differential vascular expression and regulation of oncofetal tenascin-C and fibronectin variants in renal cell carcinoma (RCC): implications for an individualized angiogenesis-related targeted drug delivery. Histochem Cell Biol. 2012, 137: 195-204. 10.1007/s00418-011-0886-z.
Guttery DS, Shaw JA, Lloyd K, Pringle JH, Walker RA: Expression of tenascin-C and its isoforms in the breast. Cancer Metastasis Rev. 2010, 29: 595-606. 10.1007/s10555-010-9249-9.
Brack SS, Silacci M, Birchler M, Neri D: Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res. 2006, 12: 3200-3208. 10.1158/1078-0432.CCR-05-2804.
Eigentler TK, Weide B, de Braud F, Spitaleri G, Romanini A, Pflugfelder A, Gonzalez-Iglesias R, Tasciotti A, Giovannoni L, Schwager K, Lovato V, Kaspar M, Trachsel E, Menssen HD, Neri D, Garbe C: A Dose-Escalation and Signal-Generating Study of the Immunocytokine L19-IL2 in Combination with Dacarbazine for the Therapy of Patients with Metastatic Melanoma. Clin Cancer Res. 2011, 17: 7732-7742. 10.1158/1078-0432.CCR-11-1203.
Johannsen M, Spitaleri G, Curigliano G, Roigas J, Weikert S, Kempkensteffen C, Roemer A, Kloeters C, Rogalla P, Pecher G, Miller K, Berndt A, Kosmehl H, Trachsel E, Kaspar M, Lovato V, Gonzalez-Iglesias R, Giovannoni L, Menssen HD, Neri D, de Braud F: The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur J Cancer. 2010, 46: 2926-2935. 10.1016/j.ejca.2010.07.033.
Brellier F, Martina E, Chiquet M, Ferralli J, van der Heyden M, Orend G, Schittny JC, Chiquet-Ehrismann R, Tucker RP: The adhesion modulating properties of tenascin-W. Int J Biol Sci. 2012, 8: 187-94.
Berndt A, Köllner R, Richter P, Franz M, Voigt A, Berndt A, Borsi L, Giavazzi R, Neri D, Kosmehl H: A comparative analysis of oncofetal fibronectin and tenascin-C incorporation in tumour vessels using human recombinant SIP format antibodies. Histochem Cell Biol. 2010, 133: 467-75. 10.1007/s00418-010-0685-y.
Beachy PA, Karhadkar SS, Berman DM: Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004, 432: 324-331. 10.1038/nature03100.
Fukunaga-Kalabis M, Martinez G, Nguyen TK, Kim D, Santiago-Walker A, Roesch A, Herlyn M: Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population. Oncogene. 2010, 29: 6115-6124. 10.1038/onc.2010.350.
Hjelmeland AB, Lathia JD, Sathornsumetee S, Rich JN: Twisted tango: brain tumor neurovascular interactions. Nat Neurosci. 2011, 14: 1375-1381. 10.1038/nn.2955.
Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, Sotiropoulou PA, Loges S, Lapouge G, Candi A, Mascre G, Drogat B, Dekoninck S, Haigh JJ, Carmeliet P, Blanpain C: A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011, 478: 399-403. 10.1038/nature10525.
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ: A perivascular niche for brain tumor stem cells. Cancer Cell. 2007, 11: 69-82. 10.1016/j.ccr.2006.11.020.
Charles N, Holland EC: The perivascular niche microenvironment in brain tumor progression. Cell Cycle. 2010, 9: 3012-3021. 10.4161/cc.9.15.12710.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6890/12/14/prepub