Ten simple rules for neuroimaging meta-analysis

Neuroscience & Biobehavioral Reviews - Tập 84 - Trang 151-161 - 2018
Veronika I. Müller1,2, Edna C. Cieslik1,2, Angela R. Laird3, Peter T. Fox4,5,6, Joaquim Radua7,8,9, David Mataix-Cols8, Christopher R. Tench10, Tal Yarkoni11, Thomas E. Nichols12,13, Peter E. Turkeltaub14,15, Tor D. Wager16,17, Simon B. Eickhoff1,2
1Institute of Systems Neuroscience and Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
2Institute of Neuroscience und Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
3Department of Physics, Florida International University, Miami, FL, USA
4Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
5Research Service, South Texas Veterans Administration Medical Center, San Antonio, TX, USA
6Shenzhen Institute of Neuroscience, Shenzhen University, Shenzhen, China
7FIDMAG Germanes Hospitalàries, CIBERSAM, Barcelona, Spain
8Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
9Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
10(CRT) Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
11Department of Psychology, University of Texas at Austin, Austin, TX, USA
12Department of Statistics, University of Warwick, Coventry, United Kingdom
13Warwick Manufactoring Group, University of Warwick, Coventry, United Kingdom
14Department of Neurology. Georgetown University Medical Center. Washington, DC, USA.
15Research Division, MedStar National Rehabilitation Hospital, Washington DC, USA
16Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
17Institute of Cognitive Science, University of Colorado, Boulder, USA

Tài liệu tham khảo

Ahmed, 2012, Assessment of publication bias, selection bias, and unavailable data in meta-analyses using individual participant data: a database survey, Br. Med. J., 344, 10.1136/bmj.d7762 Alegria, 2016, Meta-analysis of fMRI studies of disruptive behavior disorders, Am. J. Psychiatry, 173, 1119, 10.1176/appi.ajp.2016.15081089 Alustiza, 2016, Meta-analysis of functional neuroimaging and cognitive control studies in Schizophrenia: preliminary elucidation of a core dysfunctional timing network, Front. Psychol., 7, 192, 10.3389/fpsyg.2016.00192 American Psychological Association, 2010 Brett, 2001, Using the Talairach atlas with the MNI template, NeuroImage, 13, S85, 10.1016/S1053-8119(01)91428-4 Brett, 2002, The problem of functional localization in the human brain, Nat. Rev. Neurosci., 3, 243, 10.1038/nrn756 Button, 2013, Power failure: why small sample size undermines the reliability of neuroscience, Nat. Rev. Neurosci., 14, 365, 10.1038/nrn3475 Carp, 2012, On the plurality of (methodological) worlds: estimating the analytic flexibility of FMRI experiments, Front. Neurosci., 6, 149, 10.3389/fnins.2012.00149 Carter, 2014 Chumbley, 2009, False discovery rate revisited: FDR and topological inference using Gaussian random fields, NeuroImage, 44, 62, 10.1016/j.neuroimage.2008.05.021 Cieslik, 2015, Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses, Neurosci. Biobehav. Rev., 48, 22, 10.1016/j.neubiorev.2014.11.003 Cieslik, 2016, Different involvement of subregions within dorsal premotor and medial frontal cortex for pro- and antisaccades, Neurosci. Biobehav. Rev., 68, 256, 10.1016/j.neubiorev.2016.05.012 Collins, 1994, Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space, J. Comput. Assist. Tomogr., 18, 192, 10.1097/00004728-199403000-00005 Costafreda, 2009, A parametric approach to voxel-based meta-analysis, Neuroimage, 46, 115, 10.1016/j.neuroimage.2009.01.031 Daniel, 2016, Delayed match-to-sample in working memory: a BrainMap meta-analysis, Biol. Psychol., 120, 10, 10.1016/j.biopsycho.2016.07.015 Diggle, 2015, Statistics: a data science for the 21st century, J. R. Stat. Soc. Ser. A (Stat. Soc.), 178, 793, 10.1111/rssa.12132 Eickhoff, 2009, Coordinate-based ALE meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty, Hum. Brain Mapp., 30, 2907, 10.1002/hbm.20718 Eickhoff, 2012, Activation likelihood estimation meta-analysis revisited, NeuroImage, 59, 2349, 10.1016/j.neuroimage.2011.09.017 Eickhoff, 2016, Behavior, Sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation, NeuroImage, 137, 70, 10.1016/j.neuroimage.2016.04.072 Eklund, 2016, Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates, Proc. Natl. Acad. Sci. U. S. A., 113, 7900, 10.1073/pnas.1602413113 Forstmeier, 2017, Detecting and avoiding likely false-positive findings—a practical guide, Biol. Rev. Camb. Philos. Soc., 92, 1941, 10.1111/brv.12315 Fox, 2002, Opinion: mapping context and content: the BrainMap model, Nat. Rev. Neurosci., 3, 319, 10.1038/nrn789 Fox, 2015, The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes, NeuroImange, 111, 611, 10.1016/j.neuroimage.2015.02.039 Gilbert, 2006, Differential functions of lateral and medial rostral prefrontal cortex (area 10) revealed by brain-behavior associations, Cereb. Cortex, 16, 1783, 10.1093/cercor/bhj113 Gorgolewski, 2015, NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain, Front. Neuroinf., 9, 8, 10.3389/fninf.2015.00008 Ioannidis, 2014, Publication and other reporting biases in cognitive sciences: detection, prevalence, and prevention, Trends Cognit. Sci., 18, 235, 10.1016/j.tics.2014.02.010 Kicinski, 2014, How does under-reporting of negative and inconclusive results affect the false-positive rate in meta-analysis? A simulation study, BMJ Open, 4, e004831, 10.1136/bmjopen-2014-004831 Kurkela, 2016, Event-related fMRI studies of false memory: an activation likelihood estimation meta-analysis, Neuropsychologia, 81, 149, 10.1016/j.neuropsychologia.2015.12.006 Laird, 2005, BrainMap: the social evolution of a human brain mapping database, Neuroinformatics, 3, 65, 10.1385/NI:3:1:065 Laird, 2015, Neural architecture underlying classification of face perception paradigms, NeuroImage, 119, 70, 10.1016/j.neuroimage.2015.06.044 Lancaster, 2007, Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template, Hum. Brain Mapp., 28, 1194, 10.1002/hbm.20345 Langner, 2013, Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention, Psychol. Bull., 139, 870, 10.1037/a0030694 Lieberman, 2009, Type I and Type II error concerns in fMRI research: re-balancing the scale, Soc. Cognit. Affect. Neurosci., 4, 423, 10.1093/scan/nsp052 Müller, 2017, Altered brain activity in unipolar depression revisited: meta-analyses of neuroimaging studies, JAMA Psychiatry, 74, 47, 10.1001/jamapsychiatry.2016.2783 Nichols, 2017, Best practices in data analysis and sharing in neuroimaging using MRI, Nat. Neurosci., 20, 299, 10.1038/nn.4500 Pauli, 2016, Regional Specialization within the human striatum for diverse psychological functions, Proc. Natl. Acad. Sci. U. S. A., 113, 1907, 10.1073/pnas.1507610113 Purcell, 2011, Examining the central and peripheral processes of written word production through meta-analysis, Front. Psychol., 2, 239, 10.3389/fpsyg.2011.00239 Radua, 2009, Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder, Br. J. Psychiatry, 195, 393, 10.1192/bjp.bp.108.055046 Radua, 2012, Meta-analytic methods for neuroimaging data explained, Biol. Mood Anxiety Disorders, 2, 6, 10.1186/2045-5380-2-6 Radua, 2012, A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps, Eur. Psychiatry, 27, 605, 10.1016/j.eurpsy.2011.04.001 Reid, 2016, ANIMA: a data-sharing initiative for neuroimaging meta-analyses, NeuroImage, 124, 1245, 10.1016/j.neuroimage.2015.07.060 Remijnse, 2009, Differential frontal-striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive-compulsive disorder, Psychol. Med., 39, 1503, 10.1017/S0033291708005072 Rosenthal, 1979, The file drawer problem and tolerance for null results, Psychol. Bull., 86, 638, 10.1037/0033-2909.86.3.638 Rottschy, 2012, Modelling neural correlates of working memory: a coordinate-based meta-analysis, NeuroImage, 60, 830, 10.1016/j.neuroimage.2011.11.050 Rubia, 2014, Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis, Biol. Psychiatry, 76, 616, 10.1016/j.biopsych.2013.10.016 Salimi-Khorshidi, 2009, Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies, NeuroImage, 45, 810, 10.1016/j.neuroimage.2008.12.039 Salimi-Khorshidi, 2011, Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations, IEEE Trans. Med. Imaging, 30, 1401, 10.1109/TMI.2011.2122341 Simmons, 2011, False-positive psychology: undisclosed flexibility in datacollection and analysis allows presenting anything as significant, Psychol. Sci., 22, 1359, 10.1177/0956797611417632 Spreng, 2010, Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains, Neurosci. Biobehav. Rev., 34, 1178, 10.1016/j.neubiorev.2010.01.009 Talairach, 1988 Tench, 2013, Coordinate based meta-analysis of functional neuroimaging data; false discovery rate control and diagnostics, PLoS One, 8, e70143, 10.1371/journal.pone.0070143 Tench, 2014, Coordinate based meta-analysis of functional neuroimaging data using activation likelihood estimation; full width half max and group comparisons, PLoS One, 9, 3106734, 10.1371/journal.pone.0106735 Turkeltaub, 2002, Meta-analysis of the functional neuroanatomy of single-word reading: method and validation, NeuroImage, 16, 765, 10.1006/nimg.2002.1131 Turkeltaub, 2011, Are networks for residual language function and recovery consistent across aphasic patients?, Neurology, 76, 1726, 10.1212/WNL.0b013e31821a44c1 Turkeltaub, 2012, Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses, Hum. Brain Mapp., 33, 1, 10.1002/hbm.21186 Wager, 2004, Neuroimaging studies of shifting attention: a meta-analysis, NeuroImage, 22, 1679, 10.1016/j.neuroimage.2004.03.052 Wager, 2007, Meta-analysis of functional neuroimaging data: current and future directions, Soc. Cognit. Affect. Neurosci., 2, 150, 10.1093/scan/nsm015 Wager, 2009, Evaluating the consistency and specificity of neuroimaging data using meta-analysis, NeuroImage, 45, S210, 10.1016/j.neuroimage.2008.10.061 Woo, 2014, Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations, NeuroImage, 91, 412, 10.1016/j.neuroimage.2013.12.058 Yang, 2015, An integrative neural model of social perception, action observation, and theory of mind, Neurosci. Biobehav. Rev., 51, 263, 10.1016/j.neubiorev.2015.01.020 Yarkoni, 2011, Large-scale automated synthesis of human functional neuroimaging data, Nat. Methods, 8, 665, 10.1038/nmeth.1635 zu Eulenburg, 2012, Meta-analytical definition and functional connectivity of the human vestibular cortex, NeuroImage, 60, 162, 10.1016/j.neuroimage.2011.12.032