Ten‐eleven translocation‐2 affects the fate of cells and has therapeutic potential in digestive tumors

Chronic Diseases and Translational Medicine - Tập 5 - Trang 267-272 - 2019
Feng Wang1, Jing Zhang1, Jian Qi1
1Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China

Tóm tắt

Abstract

Ten‐eleven translocation (TET) methylcytosine dioxygenases catalyze the oxidative reactions of 5‐methylcytosine (5‐mC) to 5‐hydroxymethylcytosine (5‐hmC), 5‐formylcytosine (5‐fC), and 5‐carboxylcytosine (5‐caC), which are intermediate steps during DNA demethylation. It is reported that somatic mutations of TET2 gene are identified in a variety of human tumors, especially in hematological malignancies. The tendency and mechanism of cellular differentiation in different systems are affected by TET2 via regulation of associated gene expression or maintenance of demethylated state. TET2 acts as a critical driver of tumorigenesis through the conversion of 5‐mC to 5‐hmC and successive oxidation products. Sometimes, it requires special interactions and cofactors. Here, we reviewed recent advances in understanding the function of TET2 proteins in regulating cell differentiation, and its role in various tumors focusing on several digestive cancers.


Tài liệu tham khảo

10.1038/nrc3130 10.1146/annurev-genet-102108-134205 10.1038/nrg.2017.33 10.1126/science.1210944 10.1126/science.1170116 10.1089/scd.2013.0604 10.1016/j.exphem.2014.04.008 10.1038/nrc3343 10.1182/blood-2009-07-234484 10.1007/s12185-016-2122-z 10.1182/blood-2012-02-408542 10.1111/cas.12408 10.1074/jbc.M113.524140 10.1016/j.molcel.2012.12.019 10.1038/nature11742 10.1016/j.celrep.2014.11.004 10.1016/j.molcel.2014.12.023 10.1038/nature12052 10.1016/j.metabol.2018.08.006 10.1038/s41586-018-0350-5 10.1016/j.lfs.2018.04.044 10.1089/dna.2017.4118 10.1126/science.aag1381 10.3389/fonc.2019.00210 10.1146/annurev-genet-110711-155451 10.1038/nrm3589 10.1016/j.cell.2013.12.019 10.1016/j.cell.2011.08.042 10.1101/gad.179184.111 10.1038/nature12750 10.1016/j.cell.2012.11.014 10.1016/j.cell.2013.11.020 10.1038/nature09303 10.1126/science.1210597 10.1016/j.immuni.2015.07.017 10.1038/s41467-019-09541-y 10.1172/JCI92026 10.4049/jimmunol.1700559 10.1038/ni.3630 10.1038/nature15713 10.1182/blood-2016-08-736587 10.1016/j.exphem.2017.01.002 10.1093/nar/gkx666 10.1182/blood-2010-12-324707 10.1038/srep43539 10.1038/ijo.2017.8 10.1016/j.molcel.2012.08.007 10.1371/journal.pgen.1006987 10.1016/j.celrep.2016.04.044 10.1038/ncb3147 10.1016/j.bbrc.2015.08.122 10.1002/stem.1718 10.1155/2018/6985031 10.18632/oncotarget.4281 10.1158/0008-5472.CAN-16-2964 10.1016/j.yexcr.2018.01.011 10.1002/iub.1490 10.1038/s41388-018-0524-5 10.1182/blood-2009-03-210039 10.1056/NEJMoa0810069 10.1038/leu.2013.337 10.1038/ng.391 10.3324/haematol.2015.126227 Aslanyan M.G., 2014, Clinical and biological impact of TET2 mutations and expression in younger adult AML patients treated within the EORTC/GIMEMA AML‐12 clinical trial, Ann Hematol, 93, 1401 Yamazaki J., 2015, Hypomethylation of TET2 target genes identifies a curable subset of acute myeloid leukemia, J Natl Cancer Inst, 108 10.1038/leu.2011.71 10.1002/ajh.25267 10.1182/blood-2010-03-274704 10.1038/ng.3442 10.3960/jslrt.55.145 10.3324/haematol.2013.088740 10.3960/jslrt.56.145 10.1084/jem.20131144 10.1186/1471-2407-10-401 10.1016/j.celrep.2015.10.037 10.3324/haematol.2013.091249 10.1101/cshperspect.a026518 10.1007/s00404-015-3704-3 10.1158/1055-9965.EPI-16-0373 10.1038/onc.2016.376 10.1038/ncomms9219