Temporal large-eddy simulation: theory and implementation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gullbrand, J.: Grid-independent large-eddy simulation in turbulent channel flow using three-dimensional explicit filtering. Center for Turbulence Research Annual Research Briefs 167 (2002)
Germano M., Piomelli U., Moin P., Cabot W. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3: 1760
Domaradzki J., Saiki E. (1997). A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9: 2148
Stolz S., Adams N. (1999). An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11: 1699
Moin, P., Jimenez, J.: Large-eddy simulation of complex turbulent flows. AIAA Paper No. 93–3099 (1993)
Dakhoul Y., Bedford K. (1986). Improved averaging method for turbulent flow simulation. Part I: Theoretical development and application to Burgers’ transport equation. Int. J. Numer. Methods Fluids 6: 49
Pruett C. (2000). On Eulerian time-domain filtering for spatial large-eddy simulation. AIAA J. 38: 1634
Germano, M.: From RANS to DNS: Toward a bridging model. In: Voke, P., Sandham, N., Kleiser, L. (eds.) Direct and Large-Eddy Simulation-III, Kluwer, Dordrecht, 225 (1999)
Germano M. (2001). LES overview. In: Liu, C., Sakell, L., Beutner, T. (eds) DNS/LES Progress and Challenges, pp 1. Greyden, Columbus
Blaisdell G. (1997). Computation of discrete filters and differential operators for large-eddy simulation. In: Liu, C., Liu, Z. (eds) Advances in DNS/LES, pp 333. Greyden, Columbus
Vasilyev O., Lund T., Moin P. (1998). A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 141: 82
Meneveau C., Lund T., Cabot W. (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319: 353–385
Speziale C. (1985). Subgrid scale stress models for large-eddy simulation of rotating turbulent flows. Geophys. Astrophys. Fluid Dyn. 33: 199
Speziale C. (1985). Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. J. Fluid Mech. 156: 55
Speziale C. (1987). On the decomposition of turbulent flow fields for the analysis of coherent structures. Acta Mech. 70: 243–250
Pruett C., Gatski T., Grosch C., Thacker W. (2003). The temporally filtered Navier–Stokes equations: properties of the residual stress. Phys. Fluids 15: 2127
Pruett, C., Thomas, B., Grosch, C., Gatski, T.: A temporal approximate deconvolution model for large-eddy simulation. Phys. Fluids 18 (2006)
Strum R., Kirk D. (1988). First Principles of Discrete Systems and Digital Signal Processing. Addison-Wesley, New York
Vreman B., Geurts B., Huerten H. (1994). Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 278: 351
Pruett C., Adams N., Sochacki S. (2001). On Taylor-series expansions of residual stress. Phys. Fluids 13: 2578
Pruett C. (2001). Toward the de-mystification of LES. In: Liu, C., Sakell, L., Beutner, T. (eds) DNS/LES Progress and Challenges, pp 231. Greyden, Columbus
Stefano D., Vasilyev O. (2001). A study of the effect of smooth filtering in LES. In: Liu, C., Sakell, L., Beutner, T. (eds) DNS/LES Progress and Challenges, pp 247. Greyden, Columbus
Eswaran V., Pope S. (1988). An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16: 257
Stolz S., Adams N., Kleiser L. (2001). An approximate deconvolution model for large-eddy simulations with application to incompressible wall-bounded flows. Phys. Fluids 13: 997
Stolz S., Adams N., Kleiser L. (2001). The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent- boundary-layer interaction. Phys. Fluids 13: 2985
Åkervik E., Brandt L., Henningson D., Hœpffner J., Marxen O., Schlatter P. (2006). Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18: 068102
Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid scale models for large eddy simulation, AIAA Paper 80-1357 (1980)
Domaradzki J. (2000). The subgrid-scale estimation model for high Reynolds number turbulence. Phys. Fluids 12: 193
Moser R., Kim J., Mansour N. (1999). Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11: 943