Temporal large-eddy simulation: theory and implementation

Theoretical and Computational Fluid Dynamics - Tập 22 Số 3-4 - Trang 275-304 - 2008
C. David Pruett1
1Department of Mathematics and Statistics, James Madison University, Harrisonburg, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Frisch U. (1995). Turbulence. Cambridge University Press, Cambridge

Gullbrand, J.: Grid-independent large-eddy simulation in turbulent channel flow using three-dimensional explicit filtering. Center for Turbulence Research Annual Research Briefs 167 (2002)

Germano M., Piomelli U., Moin P., Cabot W. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3: 1760

Domaradzki J., Saiki E. (1997). A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9: 2148

Stolz S., Adams N. (1999). An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11: 1699

Moin, P., Jimenez, J.: Large-eddy simulation of complex turbulent flows. AIAA Paper No. 93–3099 (1993)

Dakhoul Y., Bedford K. (1986). Improved averaging method for turbulent flow simulation. Part I: Theoretical development and application to Burgers’ transport equation. Int. J. Numer. Methods Fluids 6: 49

Pruett C. (2000). On Eulerian time-domain filtering for spatial large-eddy simulation. AIAA J. 38: 1634

Germano, M.: From RANS to DNS: Toward a bridging model. In: Voke, P., Sandham, N., Kleiser, L. (eds.) Direct and Large-Eddy Simulation-III, Kluwer, Dordrecht, 225 (1999)

Germano M. (2001). LES overview. In: Liu, C., Sakell, L., Beutner, T. (eds) DNS/LES Progress and Challenges, pp 1. Greyden, Columbus

Blaisdell G. (1997). Computation of discrete filters and differential operators for large-eddy simulation. In: Liu, C., Liu, Z. (eds) Advances in DNS/LES, pp 333. Greyden, Columbus

Vasilyev O., Lund T., Moin P. (1998). A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 141: 82

Aldama A. (1990). Filtering Techniques for Turbulent Flow Simulation. Springer, Berlin

Meneveau C., Lund T., Cabot W. (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319: 353–385

Speziale C. (1985). Subgrid scale stress models for large-eddy simulation of rotating turbulent flows. Geophys. Astrophys. Fluid Dyn. 33: 199

Speziale C. (1985). Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. J. Fluid Mech. 156: 55

Speziale C. (1987). On the decomposition of turbulent flow fields for the analysis of coherent structures. Acta Mech. 70: 243–250

Pruett C., Gatski T., Grosch C., Thacker W. (2003). The temporally filtered Navier–Stokes equations: properties of the residual stress. Phys. Fluids 15: 2127

Pruett, C., Thomas, B., Grosch, C., Gatski, T.: A temporal approximate deconvolution model for large-eddy simulation. Phys. Fluids 18 (2006)

Strum R., Kirk D. (1988). First Principles of Discrete Systems and Digital Signal Processing. Addison-Wesley, New York

Vreman B., Geurts B., Huerten H. (1994). Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 278: 351

Pruett C., Adams N., Sochacki S. (2001). On Taylor-series expansions of residual stress. Phys. Fluids 13: 2578

Pruett C. (2001). Toward the de-mystification of LES. In: Liu, C., Sakell, L., Beutner, T. (eds) DNS/LES Progress and Challenges, pp 231. Greyden, Columbus

Stefano D., Vasilyev O. (2001). A study of the effect of smooth filtering in LES. In: Liu, C., Sakell, L., Beutner, T. (eds) DNS/LES Progress and Challenges, pp 247. Greyden, Columbus

Speziale C. (1979). Invariance of turbulent closure models. Phys. Fluids 22: 1033

Eswaran V., Pope S. (1988). An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16: 257

Stolz S., Adams N., Kleiser L. (2001). An approximate deconvolution model for large-eddy simulations with application to incompressible wall-bounded flows. Phys. Fluids 13: 997

Stolz S., Adams N., Kleiser L. (2001). The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent- boundary-layer interaction. Phys. Fluids 13: 2985

Åkervik E., Brandt L., Henningson D., Hœpffner J., Marxen O., Schlatter P. (2006). Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18: 068102

Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid scale models for large eddy simulation, AIAA Paper 80-1357 (1980)

Domaradzki J. (2000). The subgrid-scale estimation model for high Reynolds number turbulence. Phys. Fluids 12: 193

Moser R., Kim J., Mansour N. (1999). Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11: 943

Sandham N., Kleiser L. (1992). The late stages of transition to turbulence in channel flow. J. Fluid Mech. 245: 319