Temporal evolution of magma and crystal mush storage conditions in the Bárðarbunga-Veiðivötn volcanic system, Iceland
Tài liệu tham khảo
Ariskin, 1993, Comagmat: a Fortran program to model magma differentiation processes, Comput. Geosci., 19, 1155, 10.1016/0098-3004(93)90020-6
Bali, 2018, Melt inclusion constraints on volatile systematics and degassing history of the 2014–2015 Holuhraun eruption, Iceland. Contrib. Mineral. Petrol., 173, 9, 10.1007/s00410-017-1434-1
Carlson, 1990, Densities and porosities in the oceanic crust and their variations with depth and age, J. Geophys. Res., 95, 9153, 10.1029/JB095iB06p09153
Cashman, 2017, Vertically extensive and unstable magmatic systems: a unified view of igneous processes, Science, 355, 1, 10.1126/science.aag3055
Cooper, 2016, Timescales of storage and recycling of crystal mush at Krafla Volcano, Iceland, Contrib. Mineral. Petrol., 171, 1, 10.1007/s00410-016-1267-3
Danyushevsky, 2011, Petrolog3: integrated software for modeling crystallization processes, Geochem. Geophys. Geosyst., 12, 1, 10.1029/2011GC003516
Eason, 2015, Effects of deglaciation on the petrology and eruptive history of the Western Volcanic Zone, Iceland, Bull. Volcanol., 77, 1, 10.1007/s00445-015-0916-0
Edmonds, 2019, Architecture and dynamics of magma reservoirs, Philos. Trans. R. Soc. A., 377, 1, 10.1098/rsta.2018.0298
Eksinchol, 2019, Rate of melt ascent beneath Iceland from the magmatic response to deglaciation, Physics, 1
Gee, 1998, Glacioisostacy controls chemical and isotopic characteristics of tholeiites from the Reykjanes Peninsula, SW Iceland, Earth Planet. Sci. Lett., 164, 1, 10.1016/S0012-821X(98)00246-5
Gudmundsson, 1986, Mechanical aspect of postglacial volcanism and tectonics of the Reykjanes Peninsula, southwest Iceland, J. Geophys. Res., 91, 711
Halldórsson, 2018, Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage, Contrib. Mineral. Petrol., 173, 1, 10.1007/s00410-018-1487-9
Halldórsson, 2008, Isotopic-heterogeneity of the thjorsa lava — implications for mantle sources and crustal processes within the eastern rift zone, Iceland, Chem. Geol., 255, 305, 10.1016/j.chemgeo.2008.06.050
Hansen, 2000, Plagioclase ultraphyric basalts in Iceland : the mush of the rift, J. Volcanol. Geotherm. Res., 98, 1, 10.1016/S0377-0273(99)00189-4
Hardarson, 1991, Increased mantle melting beneath Snaefellsjökull volcano during Late Pleistocene deglaciation, Nature, 353, 62, 10.1038/353062a0
Hartley, 2018, Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contrib. Mineral. Petrol., 173, 1
Hjartarson, 1988, þjórsárhraunið mikla - stærsta nútímahraun jarðar (The great þjórsá lava - the largest Holocene lava on Earth), Náttúrufræöingurinn, 58, 1
Holness, 2007, Textures in partially solidified crystalline nodules: a window into the pore structure of slowly cooled mafic intrusions, J. Petrol., 48, 1243, 10.1093/petrology/egm016
Holness, 2019, Magma chambers versus mush zones: constraining the architecture of sub-volcanic plumbing systems from microstructural analysis of crystalline enclaves, Philos. Trans. R. Soc. A., 377, 1, 10.1098/rsta.2018.0006
Hudson, 2017, Deep crustal melt plumbing of Bárðarbunga volcano, Iceland, Geophys. Res. Lett., 44, 8785, 10.1002/2017GL074749
Jakobsson, 1979, Petrology of recent basalts of the eastern volcanic zone, Iceland, Acta Nat. Isl., 26, 1
Jakobsson, 1978, Petrology of the western Reykjanes Peninsula, Iceland, J. Petrol., 19, 669, 10.1093/petrology/19.4.669
Jull, 1996, The effect of deglaciation on mantle melting beneath Iceland, J. Geophys. Res., 101, 21.815, 10.1029/96JB01308
Kahl, 2013, Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna, Bull. Volcanol., 75, 1, 10.1007/s00445-013-0692-7
Kelemen, 1997, Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: implications for magma transport in the oceanic lower crust, J. Geophys. Res. Solid Earth, 102, 475
Larsen, 1984, Recent volcanic history of the Veidivötn fissure swarm, southern Iceland - an approach to volcanic risk assessment, J. Volcanol. Geotherm. Res., 22, 33, 10.1016/0377-0273(84)90034-9
Larsen, 2014
Le Breton, 2016, Post-glacial rebound of Iceland during the Holocene, J. Geol. Soc. London, 167, 417, 10.1144/0016-76492008-126
Maclennan, 2019, Mafic tiers and transient mushes: evidence from Iceland, Philos. Trans. R. Soc. A, 377, 1, 10.1098/rsta.2018.0021
Maclennan, 2008, Concurrent mixing and cooling of melts under Iceland, J. Petrol., 49, 1931, 10.1093/petrology/egn052
Maclennan, 2002, The link between volcanism and deglaciation in Iceland, Geochem. Geophys. Geosyst., 3, 1, 10.1029/2001GC000282
Maclennan, 2003, Melt mixing and crystallization under Theistareykir, northeast Iceland, Geochem. Geophys. Geosyst., 4, 1, 10.1029/2003GC000558
Marsh, 2006, Dynamics of magmatic systems, Elements, 2, 287, 10.2113/gselements.2.5.287
McGarvie, 1984, Torfajokull: a volcano dominated by magma mixing, Geology, 12, 685, 10.1130/0091-7613(1984)12<685:TAVDBM>2.0.CO;2
Mørk, 1984, Magma mixing in the post-glacial veidivötn fissure eruption, southeast Iceland: a microprobe study of mineral and glass variations, Lithos, 17, 55, 10.1016/0024-4937(84)90006-9
Nakamura, 1973, Origin of sector-zoning of igneous clinopyroxenes, Am. Mineral., 58, 986
Namur, 2011, Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm, Contrib. Mineral. Petrol., 163, 133, 10.1007/s00410-011-0662-z
Neave, 2017, Continuous mush disaggregation during the long-lasting Laki fissure eruption, Iceland. Am. Mineral., 102, 2007, 10.2138/am-2017-6015CCBY
Neave, 2017, Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland, Geochem. Cosmochim. Acta, 205, 100, 10.1016/j.gca.2017.02.009
Neave, 2014, Crystal storage and transfer in basaltic systems: the Skuggafjoll eruption, Iceland, J. Petrol., 55, 2311_2346, 10.1093/petrology/egu058
Neave, 2015, The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash), Contrib. Mineral. Petrol., 170, 1, 10.1007/s00410-015-1170-3
Neave, 2013, Crystal-melt relationships and the record of deep mixing and crystallization in the AD 1783 Laki eruption, Iceland, J. Petrol., 54, 1661, 10.1093/petrology/egt027
Neave, 2017, A new clinopyroxene-liquid barometer , and implications for magma storage pressures under Icelandic rift zones, Am. Mineral., 102, 777, 10.2138/am-2017-5968
Óladóttir, 2011, Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland, Bull. Volcanol., 73, 1187, 10.1007/s00445-011-0461-4
Óskarsson, 2017, The mode of emplacement of Neogene flood basalts in eastern Iceland: the plagioclase ultraphyric basalts in the Grænavatn group, J. Volcanol. Geotherm. Res., 332, 26, 10.1016/j.jvolgeores.2017.01.006
Passmore, 2012, Mush disaggregation in basaltic magma chambers: evidence from the AD 1783 Laki eruption, J. Petrol., 53, 2593, 10.1093/petrology/egs061
Pedersen, 2017, Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland, J. Volcanol. Geotherm. Res., 340, 155, 10.1016/j.jvolgeores.2017.02.027
Pinton, 2018, Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): implications for flow correlation and ages, Bull. Volcanol., 80, 1, 10.1007/s00445-017-1187-8
Putirka, 2008, Thermometers and barometers for volcanic systems, Rev. Mineral. Geochem., 69, 61, 10.2138/rmg.2008.69.3
Roeder, 1970, Olivine-liquid equilibrium, Contrib. Mineral. Petrol., 29, 275, 10.1007/BF00371276
Ryan, 2018, The mechanics and three-dimensional internal structure of active magmatic systems: kilauea volcano, Hawaii, J. Geophys. Res. Solid Earth., 93, 4213, 10.1029/JB093iB05p04213
Shorttle, 2011, Compositional trends of Icelandic basalts: implications for short-length scale lithological heterogeneity in mantle plumes, Geochem. Geophys. Geosyst., 12, 1, 10.1029/2011GC003748
Sigmundsson, 1991, Post-glacial rebound and asthenosphere viscosity in Iceland, Geophys. Res. Lett., 18, 1131, 10.1029/91GL01342
Sigvaldason, 1992, Effect of glacier loading/deloading on volcanism: postglacial volcanic production rate of the Dyngjufjöll area, central Iceland, Bull. Volcanol., 54, 385, 10.1007/BF00312320
Sinton, 2005, Postglacial eruptive history of the western volcanic zone, Iceland, Geochem. Geophys. Geosyst., 6, 1, 10.1029/2005GC001021
Sinton, 1992, Mid-ocean ridge magma chambers, J. Geophys. Res. Solid Earth, 97, 197, 10.1029/91JB02508
Slater, 1998, Deglaciation effects on mantle melting under Iceland: results from the Northern Volcanic Zone, Earth Planet. Sci. Lett., 164, 151, 10.1016/S0012-821X(98)00200-3
Sobolev, 2007, The amount of recycled crust in sources of mantle-derived melts, Science, 316, 412, 10.1126/science.1138113
Svavarsdóttir, 2017, Geochemistry and petrology of Holocene lavas in the Bárðardalur region, N-Iceland. Part I: geochemical constraints on source provenance, Jökull, 67, 17, 10.33799/jokull2017.67.017
Thordarson, 2008, Postglacial volcanism in Iceland, Jokull, 58, 197
Thordarson, 2007, Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history, J. Geodyn., 43, 118, 10.1016/j.jog.2006.09.005
Ubide, 2019, Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates, Geochem. Cosmochim. Acta, 251, 265, 10.1016/j.gca.2019.02.021
Vilmundardóttir, 1977, Tungnarhraun, jardhfraedhiskyrsla (Tungnáhraun lavas, geological report), Orkustofnun Raforkudeild, 7702, 1
Vilmundardóttir, 2000
West, 2001, Magma storage beneath axial volcano on the Juan de Fuca mid-ocean ridge, Nature, 413, 833, 10.1038/35101581
Wood, 1997, A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt, Contrib. Mineral. Petrol., 129, 166, 10.1007/s004100050330
Yang, 1996, Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar, Contrib. Mineral. Petrol., 124, 1, 10.1007/s004100050169
Zellmer, 2008, On the recent bimodal magmatic processes and their rates in the Torfajökull–Veidivötn area, Iceland, Earth Planet. Sci. Lett., 269, 388, 10.1016/j.epsl.2008.02.026