Temporal evolution of backward erosion piping in small-scale experiments
Tóm tắt
Backward erosion piping (BEP) is a form of internal erosion which can lead to failure of levees and dams. Most research focused on the critical head difference at which piping failure occurs. Two aspects have received less attention, namely (1) the temporal evolution of piping and (2) the local hydraulic conditions in the pipe and at the pipe tip. We present small-scale experiments with local pressure measurements in the pipe during equilibrium and pipe progression for different sands and degrees of hydraulic loading. The experiments confirm a positive relation between progression rate and grain size as well as the degree of hydraulic overloading. Furthermore, the analysis of local hydraulic conditions shows that the rate of BEP progression can be better explained by the bed shear stress and sediment transport in the pipe than by the seepage velocity at the pipe tip. The experiments show how different processes contribute to the piping process and these insights provide a first empirical basis for modeling pipe development using coupled seepage-sediment transport equations.
Tài liệu tham khảo
Abramian A, Devauchelle O, Seizilles G, Lajeunesse E (2019) Boltzmann distribution of sediment transport. Phys Rev Lett 123(1):014501. https://doi.org/10.1103/PhysRevLett.123.014501
Akrami S, Bezuijen A, van Beek V, Rosenbrand E, Terwindt J, Förster U (2020) Analysis of development and depth of backward erosion pipes in the presence of a coarse sand barrier. Acta Geotech. https://doi.org/10.1007/s11440-020-01053-0
Allan R (2018) Backward Erosion Piping. PhD. thesis, University of New South Wales, Sydney
Bligh WG (1910) Dams, barrages and weirs on porous foundations. Eng News 64(26):708–710
Charru F, Mouilleron H, Eiff O (2004) Erosion and deposition of particles on a bed sheared by a viscous flow. J Fluid Mech 519:55–80. https://doi.org/10.1017/S0022112004001028
Cheng N-S (2004) Analysis of bedload transport in laminar flows. Adv Water Resour 27(9):937–942. https://doi.org/10.1016/j.advwatres.2004.05.010
Cheng N-S, Chiew Y-M (1999) Incipient sediment motion with upward seepage. J Hydraul Res 37(5):665–681. https://doi.org/10.1080/00221689909498522
Chu-Agor M, Fox G, Wilson G (2009) Empirical sediment transport function predicting seepage erosion undercutting for cohesive bank failure prediction. J Hydrol 377(1−2):155–164. https://doi.org/10.1016/j.jhydrol.2009.08.020
Danka J, Zhang L (2015) Dike failure mechanisms and breaching parameters. J Geotech Geoenviron Eng 141(9):04015039. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001335
Delorme P, Devauchelle O, Barrier L, Metivier F (2018) Growth and shape of a laboratory alluvial fan. Phys Rev E. https://doi.org/10.1103/PhysRevE.98.012907
Delorme P, Voller V, Paola C, Devauchelle O, Lajeunesse É, Barrier L, Métivier F (2017) Self-similar growth of a bimodal laboratory fan. Earth Surf Dyn 5(2):239–252. https://doi.org/10.5194/esurf-5-239-2017
Fell R, Wan CF, Cyganiewicz J, Foster M (2003) Time for development of internal erosion and piping in embankment dams. J Geotech Geoenviron Eng 129(4):307–314. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307)
Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37(5):1000–1024. https://doi.org/10.1139/t00-030
Fox GA, Wilson GV, Simon A, Langendoen EJ, Akay O, Fuchs JW (2007) Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage. Earth Surf Proc Land 32(10):1558–1573. https://doi.org/10.1002/esp.1490
Francalanci S, Parker G, Solari L (2008) Effect of seepage-induced nonhydrostatic pressure distribution on bed-load transport and bed morphodynamics. J Hydraul Eng 134(4):378–389. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(378)
Fry J (2005) Lessons on internal erosion in embankment dams from failures and physical models. In: Scour and erosion: proceedings of the 8th international conference on scour and erosion (Oxford, UK, 12−15 September 2016). CRC Press, p 41
Fujisawa K, Murakami A, Nishimura S-I (2010) Numerical analysis of the erosion and the transport of fine particles within soils leading to the piping phenomenon. Soils Found 50(4):471–482. https://doi.org/10.3208/sandf.50.471
Ghilardi T, Franca M, Schleiss A (2014) Bulk velocity measurements by video analysis of dye tracer in a macro-rough channel. Meas Sci Technol 25(3):035003. https://doi.org/10.1088/0957-0233/25/3/035003
Govers G (1987) Initiation of motion in overland flow. Sedimentology 34(6):1157–1164. https://doi.org/10.1111/j.1365-3091.1987.tb00598.x
Grass AJ, Ayoub RN (1982) Bed load transport of fine sand by laminar and turbulent flow. Coast Eng Proc. https://doi.org/10.1061/9780872623736.096
Hanses UK (1985) Zur mechanik der entwicklung von erosionskanälen in geschichtetem untergrund unter stauanlagen. Universitätsbibliothek der TU Berlin, Berlin
Howard AD, McLane CF (1988) Erosion of cohesionless sediment by groundwater seepage. Water Resour Res 24(10):1659–1674. https://doi.org/10.1029/WR024i010p01659
Kenney TC, Lau D (1985) Internal stability of granular filters. Can Geotech J 22(2):215–225. https://doi.org/10.1139/t85-029
Kézdi A (1979) Soil physics: selected topics, vol 25. Developments in geotechnical engineering, vol 25. Elsevier, Amsterdam
Loiseleux T, Gondret P, Rabaud M, Doppler D (2005) Onset of erosion and avalanche for an inclined granular bed sheared by a continuous laminar flow. Phys Fluids 17(10):103304. https://doi.org/10.1063/1.2109747
Lu Y, Chiew Y-M, Cheng N-S (2008) Review of seepage effects on turbulent open-channel flow and sediment entrainment. J Hydraul Res 46(4):476–488. https://doi.org/10.3826/jhr.2008.2942
Malverti L, Lajeunesse E, Métivier F (2008) Small is beautiful: Upscaling from microscale laminar to natural turbulent rivers. J Geophys Res Earth Surf. https://doi.org/10.1029/2007JF000974
Mantz PA (1977) Incipient transport of fine grains and flakes by fluids-extended shield diagram. J Hydraul Div 103(6):601–615. https://doi.org/10.1061/JYCEAJ.0004766
Miesel D (1977) Untersuchungen zum Problem der rückschreitenden Erosion als Ursache des hydraulischen Grundbruches in Böden mit inhomogener Schichtfolge. Veröffent-lichungen des Grundbauinstitutes der Technischen Universität Berlin, vol 1. Technischen Universität Berlin, Berlin, pp 56–71
Miesel D (1978) Rückschreitende erosion unter bindiger Deckschicht. Baugrundtagung 1978. DGGT, Berlin, pp 599–626
Muller-Kirchenbauer H (1980) Zum zeitlichen Verlauf der ruckschreitenden erosion in geschichtetem Untergrund unter Dammen und Stauanlagen. In: DVWK (ed) Talsperrenbau und bauliche Probleme der Pumpspeicherwerke, vol 43. Verlag Paul Parey, Hamburg, Germany, pp 1−25
Ouriemi M, Aussillous P, Medale M, Peysson Y, Guazzelli É (2007) Determination of the critical Shields number for particle erosion in laminar flow. Phys Fluids 19(6):061706. https://doi.org/10.1063/1.2747677
Özer IE, van Damme M, Jonkman SN (2020) Towards an international levee performance database (ILPD) and its use for macro-scale analysis of levee breaches and failures. Water 12(1):119. https://doi.org/10.3390/w12010119
Pilotti M, Menduni G (2001) Beginning of sediment transport of incoherent grains in shallow shear flows. J Hydraul Res 39(2):115–124. https://doi.org/10.1080/00221680109499812
Pol JC, Van Beek VM, Kanning W, Jonkman SN (2019) Progression rate of backward erosion piping in laboratory experiments and reliability analysis. In: Ching J, Li DQ, Zhang J (eds) 7th international symposium on geotechnical safety and risk (ISGSR), Tapei. Research Publishing, Singapore, pp 764−769 https://doi.org/10.3850/978-981-11-2725-0_IS4-3-cd
Pol JC, Kanning W, Jonkman SN (2021) Temporal development of backward erosion piping in a large-scale experiment. J Geotech Geoenviron Eng 147(2):04020168. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002415
Pol JC, Van Klaveren W, Kanning W, Van Beek VM, Robbins BA, Jonkman SN (2021) Progression rate of backward erosion piping: small scale experiments. In: Rice J, Liu X, McIlroy M, Sasanakul I, Xiao M (eds) 10th international conference on scour and erosion (ICSE-10), Arlington, Virginia, USA, 2021. International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), pp 93−102
Robbins BA, Van Beek VM, Lopez-Soto JF, Montalvo-Bartolomei AM, Murphy J (2017) A novel laboratory test for backward erosion piping. Int J Phys Modell Geotech 18(5):266–279. https://doi.org/10.1680/jphmg.17.00016
Robbins BA, van Beek VM, Pol JC, Griffiths DV (2022) Errors in finite element analysis of backward erosion piping. Geomech Energy Environ. https://doi.org/10.1016/j.gete.2022.100331
Robbins BA, Griffiths DV (2021) A two-dimensional, adaptive finite element approach for simulation of backward erosion piping. Comput Geotech 129:103820. https://doi.org/10.1016/j.compgeo.2020.103820
Robbins B, Montalvo-Bartolomei A, Griffiths D (2020) Analyses of backward erosion progression rates from small-scale flume experiments. J Geotech Geoenviron Eng 146(9):04020093. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002338
Rosenbrand E, van Beek V, Bezuijen A, Akrami S, Terwindt J, Koelewijn A, Förster U (2020) Multi-scale experiments for a coarse sand barrier against backward erosion piping. Géotechnique. https://doi.org/10.1680/jgeot.19.P.358
Rotunno AF, Callari C, Froiio F (2019) A finite element method for localized erosion in porous media with applications to backward piping in levees. Int J Numer Anal Meth Geomech 43(1):293–316. https://doi.org/10.1002/nag.2864
Schmertmann J (2000) No-filter factor of safety against piping through sands. In: Silva F, Kavazanjian E (eds) Judgment and innovation. ASCE, Reston, VA, USA, pp 65–105
Seizilles G, Lajeunesse E, Devauchelle O, Bak M (2014) Cross-stream diffusion in bedload transport. Phys Fluids 26(1):013302. https://doi.org/10.1063/1.4861001
Sellmeijer JB (1988) On the mechanism of piping under impervious structures. Ph.D. thesis, Delft University of Technology, Delft
Sellmeijer JB (2006) Numerical computation of seepage erosion below dams (piping). In: Verheij HJ, Hoffmans GJ (eds) 3rd international conference on scour and erosion (ICSE-3), Amsterdam, The Netherlands. CURNET, Gouda, pp 596−601
Spiga M, Morino G (1994) A symmetric solution for velocity profile in laminar flow through rectangular ducts. Int Commun Heat Mass Transfer 21(4):469–475. https://doi.org/10.1016/0735-1933(94)90046-9
Terzaghi K (1922) Der grundbruch an stauwerken und seine verhutung. Wasserkraft 17:445–449
Vandenboer K, van Beek VM, Bezuijen A (2018) Analysis of the pipe depth development in small-scale backward erosion piping experiments. Acta Geotech 14(2):477–486. https://doi.org/10.1007/s11440-018-0667-0
Vandenboer K, Celette F, Bezuijen A (2019) The effect of sudden critical and supercritical hydraulic loads on backward erosion piping: small-scale experiments. Acta Geotech 14(3):783–794. https://doi.org/10.1007/s11440-018-0756-0
van Beek V (2015) Backward erosion piping: initiation and progression. Ph.D. thesis, Delft University of Technology, Delft
van Beek V, van Essen H, Vandenboer K, Bezuijen A (2015) Developments in modelling of backward erosion piping. Géotechnique 65(9):740–754. https://doi.org/10.1680/geot.14.P.119
van Beek VM, Knoeff H, Sellmeijer H (2011) Observations on the process of backward erosion piping in small-, medium-and full-scale experiments. Eur J Environ Civ Eng 15(8):1115–1137. https://doi.org/10.1080/19648189.2011.9714844
van Beek VM, Robbins BA, Hoffmans GJCM, Bezuijen A, van Rijn LC (2019) Use of incipient motion data for backward erosion piping models. Int J Sedim Res. https://doi.org/10.1016/j.ijsrc.2019.03.001
van Esch J, Sellmeijer J, Stolle D (2013) Modeling transient groundwater flow and piping under dikes and dams. In: Pietruszczak S, Pande GN (eds) 3rd international symposium on computational geomechanics (ComGeo III), Krakow, Poland. Taylor I\& Francis, London
van Rhee C (2015) Slope failure by unstable breaching. Proc Inst Civ Eng Marit Eng 168(2):84–92. https://doi.org/10.1680/jmaen.14.00006
Ward BD (1968) Surface shear at incipient motion of uniform sands. PhD Thesis, University of Arizona, Tucson
Wewer M, Aguilar-López JP, Kok M, Bogaard T (2021) A transient backward erosion piping model based on laminar flow transport equations. Comput Geotech 132:103992. https://doi.org/10.1016/j.compgeo.2020.103992
White C (1940) The equilibrium of grains on the bed of a stream. Proc R Soc Lond A 174(958):322–338. https://doi.org/10.1098/rspa.1940.0023
White S (1970) Plane bed thresholds of fine grained sediments. Nature 228(5267):152–153. https://doi.org/10.1038/228152a0
Wong M, Parker G (2006) Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. J Hydraul Eng 132(11):1159–1168. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159)
Xiao Y, Cao H, Luo G (2019) Experimental investigation of the backward erosion mechanism near the pipe tip. Acta Geotech 14(3):767–781. https://doi.org/10.1007/s11440-019-00779-w
Yalin MS (1963) An expression for bed-load transportation. J Hydraul Div 89(3):221–250. https://doi.org/10.1061/JYCEAJ.0000874
Yalin MS, Karahan E (1979) Inception of sediment transport. J Hydraul Div 105(11):1433–1443