Phát hiện các đặc trưng tạm thời và phân tích trách nhiệm biến đổi chuỗi thời gian thủy văn ở dòng sông đi biển miền nam Trung Quốc dưới tác động của biến đổi môi trường

Acta Geophysica - Tập 66 - Trang 1151-1170 - 2018
Lihua Chen1,2, Yan Wang1,2, Billel Touati1,2, Haopeng Guan1,2, Gang Leng1,2, Weifu Liu1,2, Shuting Lv1,2, Shuping Huang1,2, Zihao Pan1,2
1College of Civil Engineering and Architecture, Guangxi University, Nanning, China
2Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, China

Tóm tắt

Biến đổi môi trường đã dẫn đến xung đột ngày càng gia tăng giữa cung và cầu nước ở sông Qinjiang. Bài báo này sử dụng dữ liệu về lượng mưa hàng tháng, dòng chảy, bốc hơi và nhiệt độ không khí trong khoảng thời gian từ 1956 đến 2016 và kết hợp phương pháp trung bình trượt 3 năm, hồi quy tuyến tính, kiểm định Mann–Kendall và phương pháp phân tích R/S để phân tích xu hướng biến đổi của từng yếu tố, kết hợp kiểm định Mann–Kendall, phương pháp bất thường tích lũy và kiểm định t trượt để phân tích biến đổi của từng yếu tố, đồng thời kết hợp phân tích sóng liên tục Morlet để xác định các dao động chu kỳ. Trong bài báo này, ảnh hưởng của biến đổi khí hậu và hoạt động của con người đối với dòng chảy của sông Qinjiang được đánh giá định tính từ các khía cạnh xu hướng, biến đổi và chu kỳ, và những đóng góp của biến đổi khí hậu và hoạt động của con người đến sự suy giảm dòng chảy được đánh giá định lượng bằng phương pháp chênh lệch bốc hơi và một phương pháp so sánh cải tiến về tỷ lệ thay đổi độ dốc của lượng tích lũy (SCRCQ). Các kết quả thu được như sau: (1) Từ năm 1956 đến 2016, lượng mưa cho thấy xu hướng tăng nhẹ, trong khi độ sâu dòng chảy và bốc hơi thể hiện xu hướng giảm đáng kể và nhiệt độ không khí cho thấy xu hướng tăng đáng kể. Lượng mưa và nhiệt độ không khí sẽ tiếp tục tăng, trong khi dòng chảy và bốc hơi sẽ tiếp tục giảm trong tương lai. (2) Lượng mưa không có biến đổi đáng kể, trong khi có hai điểm biến đổi (1986 và 2003) trong dòng chảy, ba điểm biến đổi (1974, 1986 và 2011) trong bốc hơi và một điểm biến đổi (1996) trong nhiệt độ không khí. (3) Đặc điểm của lượng mưa cho thấy sự tương đồng với các biến đổi chu kỳ của dòng chảy, trong khi lượng mưa thể hiện sự khác biệt đáng kể với bốc hơi và nhiệt độ không khí. (4) Hoạt động của con người đóng góp chủ yếu vào sự suy giảm dòng chảy. Đóng góp của hoạt động của con người vào suy giảm dòng chảy tăng từ 43,78% lên 61,17% trong giai đoạn BR (1983–2003) và tăng từ 61,17% lên 72,66% trong giai đoạn CR (2004–2016). Điều này cho thấy đóng góp của hoạt động của con người vào suy giảm dòng chảy đang tăng lên liên tục. Tác động của hoạt động của con người đối với sự suy giảm dòng chảy ở lưu vực sông Qinjiang chủ yếu là do sử dụng nước của các hoạt động tưới tiêu, công nghiệp và cư dân đô thị, điều này là do sự gia tăng dân số và tăng trưởng các chỉ số kinh tế.

Từ khóa

#biến đổi môi trường #dòng chảy #lượng mưa #bốc hơi #khí hậu #hoạt động của con người #phân tích chuỗi thời gian thủy văn

Tài liệu tham khảo

Afifi AA, Azen SP (1972) Statistical analysis—a computer oriented approach. Harcourt Brace Jovanovich Publishers, New York, p 366 Allen MR, Ingram WJ (2002) Constraints on future change in climate and the hydrologic cycle. Nature 419(6903):224–232. https://doi.org/10.1002/hyp.1353 Amin MZM, Shaaban AJ, Ercan A, Ishida K, Kavvas ML, Chen ZQ, Jang S (2017) Future climate change impact assessment of watershed scale hydrologic processes in peninsular Malaysia by a regional climate model coupled with a physically-based hydrology model. Sci Total Environ 575:12–22. https://doi.org/10.1016/j.scitotenv.2016.10.009 Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD (2008) Human-induced changes in the hydrology of the western United States. Science 319(5866):1080–1083. https://doi.org/10.1126/science.1152538 Beniston M (2002) Climatic change: implications for the hydrological cycle and for water management. Adv Glob Change Res 10(2):194–198. https://doi.org/10.1007/0-306-47983-4 Buendia C, Batalla RJ, Sabater S, Palau A, Marcé R (2016) Runoff trends driven by climate and afforestation in a Pyrenean basin. Land Degrad Dev 27(3):823–838. https://doi.org/10.1002/ldr.2384 Chen LH, Wang Y, Yi K, Lai HT (2016) Analysis of Rainfall and River Runoff change Tendency in Qinzhou City. J Chin Hydrol 36(6):89–96. https://doi.org/10.3969/j.issn.1000-0852.2016.06.015 Christopher T, Webster PJ (1998) The annual cycle of persistence in the El Nño/Southern oscillation. Q J R Meteorol Soc 124(550):1985–2004. https://doi.org/10.1002/qj.49712455010 Chu JT, Xia J, Xu CY (2008) Statistical downscaling the daily precipitation in Haihe River basin under the climate change. J Nat Resour 23(6):1068–1077. https://doi.org/10.11849/zrzyxb.2008.06.011 Coulibaly P (2006) Spatial and temporal variability of Canadian seasonal precipitation (1900–2000). Adv Water Resour 29(12):1846–1865. https://doi.org/10.1016/j.advwatres.2005.12.013 Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang SW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2006) National Assessment Report of Climate Change (I): climate change in China and its future trend. Adv Clim Change Res 2(1):3–8. https://doi.org/10.3969/j.issn.1673-1719.2007.z1.001 Fan Y, Li J, Zhong YJ, Yang BH, Guo KY (2008) Analysis on change trend of precipitation in Yunnan dry-hot valley region based on rescaled range analysis method. Water Resour Power 26(2):24–27 (in Chinese) Farenhorst A, Li R, Jahan M, Tun HM, Mi R, Amarakoon I, Kumar A, Khafipour E (2016) Bacteria in drinking water sources of a first nation reserve in Canada. Sci Total Environ 575:813–819. https://doi.org/10.1016/j.scitotenv.2016.09.138 Feller W (1951) The asymptotic distribution of the range of sums of independent random variables. Ann Math Stat 22(3):427–432. https://doi.org/10.1214/aoms/1177729589 Fu CB, Wang Q (1992) The definition and detection of abrupt climate change. Chin J Atmos Sci 16(4):482–493. https://doi.org/10.3878/j.issn.1006-9895.1992.04.11 Fu CB, Diaz HF, Dong DF, Fletcher JO (1999) Changes in atmospheric circulation over Northern Hemisphere Oceans associated with the rapid warming of the 1920s. Int J Climatol 19(6):581–606. https://doi.org/10.1002/(SICI)1097-0088(199905)19:6%3c581:AID-JOC396%3e3.0.CO;2-P Fu GB, Chen SL, Liu CM, Shepard D (2004) Hydro-climatic trends of the Yellow River basin for the last 50 years. Clim Change 65(1):149–178. https://doi.org/10.1023/b:clim.0000037491.95395.bb Fu GB, Charles SP, Chiew FHS (2007) A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour Res 43(11):2578–2584. https://doi.org/10.1029/2007WR005890 Gao ZY, Niu FJ, Wang YB, Luo J, Lin ZJ (2017) Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China. Sci Total Environ 574:751–759. https://doi.org/10.1016/j.scitotenv.2016.09.108 Griffioen J (2017) Enhanced weathering of olivine in seawater: the efficiency as revealed by thermodynamic scenario analysis. Sci Total Environ 575:536–544. https://doi.org/10.1016/j.scitotenv.2016.09.008 Guo Y, Li ZJ, Amo-Boateng M, Deng P, Huang PN (2014) Quantitative assessment of the impact of climate variability and human activities on runoff change for the upper reaches of Weihe River. Stoch Env Res Risk A 28(2):333–346. https://doi.org/10.1007/s00477-013-0752-8 Hamed KH (2008) Trend detection in hydrologic date: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349(S3–4):350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009 Hamed KH, Rao AR (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204(S1–4):182–196. https://doi.org/10.1016/S0022-1694(97)00125-X He XQ, Zhang B, Sun LW (2012) Contribution rates of climate change and human activity on the runoff in upper and middle reaches of Heihe River basin. Chin J Ecol 31(11):2884–2890. https://doi.org/10.13292/j.1000-4890.2012.0474 He RM, Zhang JY, Bao ZX (2015) Response of runoff to climate change in the Haihe River basin. Adv Water Sci 26(1):1–9. https://doi.org/10.14042/j.cnki.32.1309.2015.01.001 Hsu KC, Li ST (2010) Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network. Adv Water Resour 33(2):190–200. https://doi.org/10.1016/j.advwatres.2009.11.005 Hu SS, Liu CM, Zheng HX, Wang ZG, Yue JJ (2012) Assessing the impacts of climate variability and human activities on streamflow in the water’ source area of Baiyangdian Lake. J Geogr Sci 22(5):895–905. https://doi.org/10.1007/s11442-012-0971-9 Huang SZ, Chang JX, Huang Q, Chen YT, Leng GY (2016) Quantifying the relative contribution of climate and human impacts on runoff change based on the Budyko hypothesis and SVM model. Water Resour Manag 30(7):2377–2390. https://doi.org/10.1007/s11269-016-1286-x Hurst HE (1951) Long term storage capacity of reservoirs. Reston Trans Am Soc Civil Eng 116(12):776–808. https://doi.org/10.1234/12345678 Hurst HE, Black RP, Simaika YM (1956) Long-term storage: an experimental study. Constable, London. https://doi.org/10.2307/2982267 Jin DL, Yang SC (1981) The method of calculating soil evaporation by ordinary meteorological data. Yangtze River 4:47–52 (in Chinese) Jones RN, Chiew FHS, Boughton WC (2006) Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv Water Resour 29(10):1419. https://doi.org/10.1016/j.advwatres.2005.11.001 Kendall MG (1975) Rank correlation measures. Charles Griffin, London, p 202 Kong DX, Miao CY, Wu JW, Duan QY (2016) Impact assessment of climate change and human activities on net runoff in the Yellow River watershed from 1951 to 2012. Ecol Eng 91:566–573. https://doi.org/10.1016/j.ecoleng.2016.02.023 Labat D (2005) Recent advances in wavelet analyses: part 1. A review of concepts. J Hydrol 314(1–4):275–288. https://doi.org/10.1016/j.jhydrol.2005.04.003 Legesse D, Vallet CC, Gasse F (2003) Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia. J Hydrol 275(1–2):67–85. https://doi.org/10.1016/s0022-1694(03)00019-2 Li Y, Yang WY (2016) The evolutionary trend of the runoff and the water challenge faced by agriculture in the three outlets area of Dongting lake. Chin Rural Water Hydropower 11:86–92. https://doi.org/10.3969/j.issn.1007-2284.2016.11.021 Li JZ, Zhou SH (2016) Quantifying the contribution of climate- and human-induced runoff decrease in the Luanhe River basin, China. J Water Clim Change 7(2):430–442. https://doi.org/10.2166/wcc.2015.041 Li L, Wang QC, Zhang GS, Fu Y, Yan LD (2004) The influence of climate change on surface water in the upper Yellow River. J Geogr Sci 59(5):716–722. https://doi.org/10.11821/xb200405009 Liang LQ, Li LJ, Liu Q (2011) Precipitation variability in Northeast China from 1961 to 2008. J Hydrol 404(1–2):67–76. https://doi.org/10.1016/j.jhydrol.2011.04.020 Ling LC, Zhang LP, Xia J (2014) Quantitative assessment of impact of climate variability and human activities on runoff change in the typical basic of the middle route of the south-to-north water transfer project. Adv Clim Change Res 10(2):118–126. https://doi.org/10.3969/j.issn.1673-1719.2014.02.006 Liu MX, Xu XL, Sun AY, Wang KL, Liu W, Zhang XY (2014) Is southwestern China experiencing more frequent precipitation extremes? Environ Res Lett 9(6):1–14. https://doi.org/10.1088/1748-9326/9/6/064002 Luo KS, Tao FL, Moiwo JP, Xiao DP (2016) Attribution of hydrological change in Heihe River basin to climate and land use change in the past three decades. Sci Rep UK 6:1–12. https://doi.org/10.1038/srep33704 Mandelbrot BB, Wallis JR (1969) Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour Res 5(5):967–988. https://doi.org/10.1029/WR005i005p00967 Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259. https://doi.org/10.2307/1907187 Marcos R, Llasat MC, Quintana-Seguí P, Turco M (2017) Seasonal predictability of water resources in a Mediterranean freshwater reservoir and assessment of its utility for end-users. Sci Total Environ 575:681–691. https://doi.org/10.1016/j.scitotenv.2016.09.080 Meresa HK, Romanowicz RJ, Napiorkowski JJ (2017) Understanding changes and trends in projected hydroclimatic indices in selected Norwegian and Polish catchments. Acta Geophys 65(4):829–848. https://doi.org/10.1007/s11600-017-0062-5 Millan MM (2014) Extreme hydro meteorological events and climate change predictions in Europe. J Hydrol 518(Part B):206–224. https://doi.org/10.1016/j.jhydrol.2013.12.041 Morlet J, Arens G, Fourgeau E, Giard D (1982) Wave propagation and sampling theory—part I: complex signal and scattering in multilayered media. Geophysics 47(2):203–221. https://doi.org/10.1190/1.1441328 Niu JY, Wu ZN, Jia H (2016) Quantitative assessment for impacts of precipitation change and runoff-yield change on Fenhe River runoff. J Jilin Univ Earth Sci Ed 46(3):814–823. https://doi.org/10.13278/j.cnki.jjuese.201603203 Ohmura A, Wild M (2002) Is the hydrological cycle accelerating? Science 298(5597):1345–1346. https://doi.org/10.1126/science.1078972 Peterson TC, Golubev VS, Groisman PY (1995) Evaporation losing its strength. Nature 337:687–688. https://doi.org/10.1038/377687b0 Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51. https://doi.org/10.1038/nature09364 Pingale SM, Khare D, Jat MK, Adamowski J (2013) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan. India Atmos Res 138:73–90. https://doi.org/10.1016/j.atmosres.2013.10.024 Qi TY, Zhang Q, Wang Y, Xiao MZ, Liu JY, Sun P (2015) Spatiotemporal patterns of pan evaporation in 1960–2005 in China: changing properties and possible causes. Sci Geogr Sin 35(12):1599–1606. https://doi.org/10.13249/j.cnki.sgs.2015.12.014 Ran LS, Wang SJ, Fan XL (2010) Channel change at Toudaoguai station and its responses to the operation of upstream reservoirs in the upper Yellow River. J Geogr Sci 20(2):231–247. https://doi.org/10.1007/s11442-010-0231-9 Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298(5597):1410–1411. https://doi.org/10.1126/science.1075390 Romanowicz RJ, Bogdanowicz E, Debele SE, Doroszkiewicz J, Hisdal H, Lawrence D, Meresa HK, Napiórkowski JJ, Osuch M, Strupczewski WG, Wilson D, Wong WK (2016) Climate change impact on hydrological extremes: preliminary results from the Polish-Norwegian project. Acta Geophys 64(2):477–509. https://doi.org/10.1515/acgeo-2016-0009 Shuai H, Li JB, He X (2016) Feature detection and attribution analysis of runoff variation in the three outlets of Southern Jingjiang River under environmental changes. J Soil Water Conserv 30(1):83–88. https://doi.org/10.13870/j.cnki.stbcxb.2016.01.017 Stocker TF, Raible CC (2005) Climate change: water cycle shifts gear. Nature 434(7035):830–833. https://doi.org/10.1038/434830a Tongal H, Demirel MC, Booij MJ (2013) Seasonality of low flows and dominant processes in the Rhine River. Stoch Environ Res Risk Assess 27(2):489–503. https://doi.org/10.1007/s00477-012-0594-9 Tongal H, Demirel MC, Moradkhani H (2017) Analysis of dam-induced cyclic patterns on river flow dynamics. Hydrol Sci J 62(4):626–641. https://doi.org/10.1080/02626667.2016.1252841 Torrence CG, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78. https://doi.org/10.1175/1520-0477(1998)07960;0061:apgtwa62;2.0.co;2 Wang XL, Hu BQ, Xia J (2002) R/S analysis method of trend and aberrance point on hydrological time series. Eng J Wuhan Univ Eng Ed 35(2):10–12. https://doi.org/10.3969/j.issn.1671-8844.2002.02.003 Wang GQ, Zhang JY, He RM (2006) Impacts of environmental change on runoff in Fenhe river basin of the middle Yellow River. Adv Water Sci 17(6):853–858. https://doi.org/10.3321/j.issn:1001-6791.2006.06.017 Wang GS, Xia J, Chen J (2009) Quantification of effects of climate changes and human activities on runoff by a monthly water balance model: a case study of the Chaobai River basin in northern China. Water Resour Res 45(7):206–216. https://doi.org/10.1029/2007wr006768 Wang SJ, Yan M, Yan YX, Shi CX, Li H (2012a) Contributions of climate change and human activities to the change in runoff increment in different sections of the Yellow River. Quatern Int 282(60):66–77. https://doi.org/10.1016/j.quaint.2012.07.011 Wang SJ, Yan YX, Yan M, Zhao XK (2012b) Quantitative estimation of the impact of precipitation and human activities on runoff change of the Huangfuchuan River basin. J Geogr Sci 22(5):906–918. https://doi.org/10.1007/s11442-012-0972-8 Wang SJ, Ling L, Cheng WM (2014) Changes of bank shift rates along the Yinchuan Plain reach of the Yellow River and their influencing factors. J Geogr Sci 24(4):703–716. https://doi.org/10.1007/s11442-014-1114-2 Werner R (2008) The latitudinal ozone variability study using wavelet analysis. J Atmos Sol Terr Phys 70(2–4):261–267. https://doi.org/10.1016/j.jastp.2007.08.022 Wu LH, Wang SJ, Bai XY, Luo WJ, Tian YC, Zeng C, Luo GJ, He SY (2017) Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed, SW China. Sci Total Environ 601:1449–1465. https://doi.org/10.1016/j.scitotenv.2017.05.288 Xia ZH, Liu M, Wang M (2014) Quantitative identification of the impact of climate change and human activity on runoff in Lake Honghu basin since 1990s. J Lake Sci 26(1):515–521. https://doi.org/10.18307/2014.0404 Xu JX (2011) Variation in annual runoff of the Wudinghe River as influenced by climate change and human activity. Quat Int 244(2):230–237. https://doi.org/10.1016/j.quaint.2010.09.014 Xu KH, Milliman JD, Xu H (2010) Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Glob Planet Change 73(3–4):219–232. https://doi.org/10.1016/j.gloplacha.2010.07.002 Xu CY, Chen H, Guo SL (2013a) Hydrological modeling in a changing environment: issues and challenges. J Water Resour Res 2(2):85–95. https://doi.org/10.12677/jwrr.2013.22013 Xu XL, Liu W, Rafique R, Wang KL (2013b) Revisiting continental US hydrologic change in the latter half of the 20th century. Water Resour Manag 27(12):4337–4348. https://doi.org/10.1007/s11269-013-0411-3 Xu XL, Scanlon BR, Schilling K, Sun A (2013c) Relative importance of climate and land surface change on hydrologic change in the US Midwest since the 1930s: implications for biofuel production. J Hydrol 497:110–120. https://doi.org/10.1016/j.jhydrol.2013.05.041 Yu YS, Chen XW (2011) Study on the percentage of trend component in a hydrological time series based on Mann–Kendall method. J Nat Resour 26(9):1585–1591. https://doi.org/10.11849/zrzyxb.2011.09.014 Yuan YJ, Zhang C, Zeng GM, Liang J, Guo SL, Huang L, Wu HP, Hua SS (2016) Quantitative assessment of the contribution of climate variability and human activity to streamflow alteration in Dongting Lake, China. Hydrol Process 35(12):70–95. https://doi.org/10.1002/hyp.10768 Zare M, Samani AAN, Mohammady M (2016) The impact of land use change on runoff generation in an urbanizing watershed in the north of Iran. Earth Sci 75(18):1–20. https://doi.org/10.1007/s12665-016-6058-7 Zhan CS, Niu CW, Song XM, Xu CY (2013) The impacts of climate variability and human activities on streamflow in Bai River watershed, Northern China. Hydrol Res 44(5):875–885. https://doi.org/10.2166/nh.2012.146 Zhang TF, Zhu XD, Wang YJ, Li HM, Liu CH (2014) The impact of climate variability and human activity on runoff changes in the Huangshui River Basin. Resour Sci 36(11):2256–2262 (in Chinese) Zhang HB, Huang Q, Zhang Q, Gu L, Chen KY, Yu QJ (2016) Change in the long-term hydrological regimes and the impacts of human activities in the main Wei River, China. Hydrol Sci J 61(6):1054–1068. https://doi.org/10.1080/02626667.2015.1027708 Zhao GJ, Tian P, Mu XM, Jiao JY, Wang F, Gao P (2014) Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J Hydrol 519(Part A):387–398. https://doi.org/10.1016/j.jhydrol.2014.07.014 Zhao YF, Zou XQ, Gao JH, Xu XWH, Wang CL, Tang DH, Wang T, Wu XW (2015) Quantifying the anthropogenic and climatic contributions to change in water discharge and sediment load into the sea: a case study of the Yangtze River, China. Sci Total Environ 536:803–812. https://doi.org/10.1016/j.scitotenv.2015.07.119