Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang, Tibet: Implications for crustal architecture, Meso-Tethyan evolution and regional mineralization

Earth-Science Reviews - Tập 185 - Trang 374-396 - 2018
Xing-Kui Li1, Jun Chen1, Ru-Cheng Wang1, Cai Li2
1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
2School of Earth Sciences, Jilin University, Changchun 130061, China

Tài liệu tham khảo

Arndt, 1987, Use and abuse of crust-formation ages, Geology, 15, 893, 10.1130/0091-7613(1987)15<893:UAAOCA>2.0.CO;2 Bao, 2007, Geochemical characteristics and isotopic dating for the Dongcuo ophiolite, Tibet Plateau, Sci. Chin., 50, 660, 10.1007/s11430-007-0045-5 Barton, 1996, Granitic magmatism and metallogeny of southwestern North America, Trans. R. Soc. Edinb. Earth Sci., 87, 261 Ballouard, 2016, Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition, Geology, 44, 231, 10.1130/G37475.1 Bau, 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect, Contrib. Mineral. Petrol., 123, 323, 10.1007/s004100050159 Blevin, 2004, Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: implications for gold-rich ore systems, Resour. Geol., 54, 241, 10.1111/j.1751-3928.2004.tb00205.x Blevin, 1992, The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia, Trans. R. Soc. Edinb. Earth Sci., 83, 305 Blevin, 1995, Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia: the metallogeny of I-and S-type granites, Econ. Geol., 90, 1604, 10.2113/gsecongeo.90.6.1604 Blevin, 1996, Intrusive metallogenic provinces in eastern Australia based on granite source and composition, Trans. R. Soc. Edinb. Earth Sci., 87, 281 Candela, 1992, Controls on ore metal ratios in granite-related ore deposits: an experimental and computational approach, Trans. R. Soc. Edinb. Earth Sci., 83, 317 Chang, 1973, Tectonic features of the Mount Jolmo Lungma region in southern Tibet, China, Sci. Geol. Sin., 1, 1 Chen, 2004, Discovery of the Shamuluo Formation in the central segment of the Bangong-co–Nujiang suture zone, Tibet, Geol. Bull. Chin., 23, 193 Chen, 2011, Copper-polymetallic resources report of the western segment of Bangong–Nujiang metallogenic belt Chen, 2013, Multiple-aged granitoids and related tungsten–tin mineralization in the Nanling Range, South China, Sci. China Earth Sci., 56, 2045, 10.1007/s11430-013-4736-9 Chen, 2014, Lithogeochemical Characteristics and Chronology of Fuye Granitic Pluton from the Western Bangong-Nujiang Metallogenic Belt in China, J. East Chin. Inst. Technol., 37, 37 Chung, 2009, The nature and timing of crustal thickening in Southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites, Tectonophysics, 477, 36, 10.1016/j.tecto.2009.08.008 Core, 2006, Unusually Cu–rich magmas associated with giant porphyry copper deposits: evidence from Bingham, Utah, Geology, 34, 41, 10.1130/G21813.1 Clark, 1982, Cenozoic mineral deposits and subduction-related magmatic arcs in Mexico, Geol. Soc. Am. Bull., 93, 533, 10.1130/0016-7606(1982)93<533:CMDASM>2.0.CO;2 Deng, 2014, Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China, Gondwana Res., 26, 419, 10.1016/j.gr.2013.08.002 Du, 2011, Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet: evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of are granites, Acta Petrol. Sin., 27, 1993 Duan, 2013, Zircon U–Pb age & geochemical characteristics of the quartz monzobiorite and metallogenic background of the Sena gold deposit in Duolong metallogenic concentrated area, Tibet, J. Jilin Univ. (Earth Sci. Ed.), 43, 1864 Duan, 2014, Geochronology and geochemical characteristics of ore-bearing porphyry in Longgen lead-zinc deposit of middle-Gangdese metallogenic belt, Tibet, Mineral Deposits, 33, 625 Duan, 2015, Geochronology and its geological significance of the ore-bearing porphyry in Chagele lead-zinc deposit in middle-Gangdese metallogenic belt, Tibet, J. Jilin Univ. (Earth Sci. Ed.), 45, 1667 Espurt, 2008, Flat subduction dynamics and deformation of the South American plate: insights from analog modeling, Tectonics, 27, 10.1029/2007TC002175 Fan, 2014, Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tiber: implications for the evolution of the Bangongco–Nujiang oceanic arm of Neo-Tethys, Int. Geol. Rev., 56, 1504, 10.1080/00206814.2014.947639 Fan, 2015, The evolution of the Bangong–Nujiang Neo-Tethys ocean: evidence from zircon U–Pb and Lu–Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites, Tectonophysics, 655, 27, 10.1016/j.tecto.2015.04.019 Fan, 2015, Features, provenance, and tectonic significance of Carboniferous–Permian glacial marine diamictites in the Southern Qiangtang–Baoshan block, Tibetan Plateau, Gondwana Res., 28, 1530, 10.1016/j.gr.2014.10.015 Fan, 2015, Petrology and U–Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: constraints on the timing of closure of the Banggong–Nujiang Ocean, Lithos, 227, 148, 10.1016/j.lithos.2015.03.021 Fan, 2016, Late Jurassic adakitic granodiorite in the Dong Co area, northern Tibet: implications for subduction of the Bangong-Nujiang oceanic lithosphere and related accretion of the Southern Qiangtang terrane, Tectonophysics, 691, 345, 10.1016/j.tecto.2016.10.026 Fang, 2015, Formation epoch of the South Tiegelong superlarge epithermal Cu (Au-Ag) deposit in Tibet and its geological implications, Acta Geosci. Sin., 36, 168 Feng, 2006, Geological characteristics of the Caima iron-polymetallic deposit, Rutog County, western Tibet, China, and its significance for mineral prospecting, Geol. Bull. Chin., 25, 267 Feng, 2007, Geological characteristics of the Fuye porphyrite iron deposit, Rutog County, Tibet, China and its significance for iron prospecting, Geol. Bull. Chin., 26, 1041 Flowerdew, 2009, Hidden Archaean and Palaeoproterozoic crust in NW Ireland? Evidence from zircon Hf isotopic data from granitoid intrusions, Geol. Mag., 146, 903, 10.1017/S0016756809990227 Förster, 1999, Late-collisional granites in the Variscan Erzgebirge, Germany, J. Petrol., 40, 1613, 10.1093/petroj/40.11.1613 Fu, 2017, Two episodes of mineralization in the Mengya’a deposit and implications for the evolution and intensity of Pb–Zn–(Ag) mineralization in the Lhasa terrane, Tibet, Ore Geol. Rev., 90, 877, 10.1016/j.oregeorev.2017.01.008 Gao, 1998, Chemical composition of the continental crust as revealed by studies in East China, Geochim. Cosmochim. Acta, 62, 1959, 10.1016/S0016-7037(98)00121-5 Gao, 2016, Geological and geochemical characteristics and significance of the Sena Cu-Au deposit from Duolong ore-concentration area, Tibet, China, Acta Mineral. Sin., 36, 199 Gehrels, 2011, Detrital zircon geochronology of pre-Tertiary strata in the Tibetan–Himalayan orogen, Tectonics, 30, 10.1029/2011TC002868 Geng, 2012, 1 Geng, 2015, New understanding in the middle and west part of Bangong Lake-Nujiang river metallogenic belt and its implication for prospecting, Geol. Surv. Chin., 2, 1 Girardeau, 1984, Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Nature, 307, 27, 10.1038/307027a0 Gomez-Tuena, 2003, Temporal control of subduction magmatism in the eastern Trans Mexican Volcanic Belt: mantle sources, slab contributions and crustal contamination, Geochem. Geophys. Geosyst., 4, 10.1029/2003GC000524 Griffin, 2002, Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes, Lithos, 61, 237, 10.1016/S0024-4937(02)00082-8 Griffin, 2013, Continental-root control on the genesis of magmatic ore deposits, Nat. Geosci., 6, 905, 10.1038/ngeo1954 Guo, 2013, 1 Gutscher, 2000, Can slab melting be caused by flat subduction?, Geology, 28, 535, 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2 Guynn, 2006, Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet, Geology, 34, 505, 10.1130/G22453.1 Hao, 2016, Underplating of basaltic magmas and crustal growth in a continental arc: evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet, Lithos, 245, 223, 10.1016/j.lithos.2015.09.015 Hao, 2016, Andesitic crustal growth via mélange partial melting: evidence from Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet, Geochem. Geophys. Geosyst., 10.1002/2016GC006248 Harris, 1988, Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud, Philos. Trans. R. Soc. A Math. Phys. Sci., 327, 263 Hart, 2004, Source and redox controls on metallogenic variations in intrusionrelated ore systems, Tombstone Tungsten Belt, Yukon Territory, Canada, Trans. R. Soc. Edinb. Earth Sci., 95, 339, 10.1017/S0263593304000276 Hedenquist, 1994, The role of magmas in the formation of hydrothermal ore deposits, Nature, 370, 519, 10.1038/370519a0 Hofmann, 1988, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 90, 297, 10.1016/0012-821X(88)90132-X Hou, 2013, Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet, Mineral. Deposita, 36, 25 Hou, 2015, Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen, Econ. Geol., 110, 1541, 10.2113/econgeo.110.6.1541 Hou, 2015, A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones, Geology, 43, 247, 10.1130/G36362.1 Hu, 2013, Geological characteristics and their prospecting significance of Fuye iron deposit in Ritu county, Tibet, Resour. Surv. Environ., 34, 29 Hu, 2010, Zircon U–Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai–Tibet plateau: age record of Pan–African movement and Indo–China movement, Geol. China, 1050–1061, 37 Hu, 2014, Geological characteristics and Ore-prospecting direction of the Caima iron deposit in Ritu County, Tibet, Resour. Surv. Environ., 35, 120 Hu, 2015, Early Ordovician granites from the South Qiangtang terrane, northern Tibet: implications for the early Paleozoic tectonic evolution along the Gondwanan proto–Tethyan margin, Lithos, 220–223, 318, 10.1016/j.lithos.2014.12.020 Huang, 2001, Structural characteristics of the basement of the Qiangtang Basin, Acta Geol. Sin., 333–337, 75 Huang, 2001, Tectonic characteristics and evolution of the Qiangtang basin, Reg. Geol. Chin., 178–186, 20 Huang, 2016, Geochronology, geochemistry, and Sr–Nd–Pb isotopes of Cretaceous granitoids from western Tibet: petrogenesis and tectonic implications for the evolution of the Bangong Meso-Tethys, Int. Geol. Rev., 55, 95, 10.1080/00206814.2015.1056257 Huang, 2016, Zircon U-Pb age and geochemical features of the early cretaceous Purang Pluton on the southern margin of Qiangtang, Xizang (Tibet), and their geological implications, Geol. Rev., 62, 569 Huebner, 1971, Buffering techniques for hydrostatic systems at elevated pressures, 123 Ishihara, 1977, The magnetite-series and ilmenite-series granitic rocks, Min. Geol., 27, 293 Ishihara, 1981, The granitoid series and mineralization, Econ. Geol. 75th Anniversary, 458 Jin, 2002, Permo–Carboniferous sequences of Gondwana affinity in southwest China and their paleogeographic implications, J. Asian Earth Sci., 20, 633, 10.1016/S1367-9120(01)00084-0 Ji, 2013, 1 Jugo, 2009, Sulfur content at sulfi de saturation in oxidized magmas, Geology, 37, 415, 10.1130/G25527A.1 JXIGS (Jiangxi Institute of Geological Survey), 2006 Kapp, 2000, Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet, Geology, 28, 19, 10.1130/0091-7613(2000)28<19:BMCCIT>2.0.CO;2 Kapp, 2003, Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet, Tectonics, 22, 1029, 10.1029/2001TC001332 Kapp, 2005, Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet, GSA Bull., 117, 865, 10.1130/B25595.1 Kapp, 2007, Geological records of the Lhasa–Qiangtang and Indo-Asian collisions in the Nima area of central Tibet, Geol. Soc. Am. Bull., 119, 917, 10.1130/B26033.1 Kay, 1996, Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30°S and 32°S, Tectonophysics, 259, 15, 10.1016/0040-1951(96)00032-7 Kay, 2001, Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust, GSA Today, 11, 4, 10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2 Kay, 1999, Neogene magmatism, tectonism, and mineral deposits of the central Andes, 7, 27 Kemp, 2006, Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon, Nature, 439, 580, 10.1038/nature04505 Lin, 2016, Zircon U-Pb ages and Hf isotopic composition of the ore-bearing porphyry in Dibao Cu (Au) deposit, Duolong ore concentration area, Xizang (Tibet), and its geological significance, Geol. Rev., 62, 1565 Lee, 2012, Copper systematics in arcmagmas and implications for crust–mantle differentiation, Science, 336, 64, 10.1126/science.1217313 Leech, 2005, The onset of India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya, Earth Planet. Sci. Lett., 234, 83, 10.1016/j.epsl.2005.02.038 Leeder, 1988, Sedimentology, paleoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse, Philos. Trans. R. Soc. London, Ser. A, 327, 107, 10.1098/rsta.1988.0123 Li, 1987, The Longmu Tso-Shuanghu–Lancang River plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in northern Xizang, China, J. Changchun Coll. Geol., 17, 155 Li, 2003, Question about the Basement of the Qiangtang Micro-plate, Geol. Rev., 49, 4 Li, 2008, A review on 20 years' study of the Longmu Co–Shuanghu–Lancang river suture zone in Qinghai-Xizang (Tibet) Plateau, Geol. Rev., 54, 105 Li, 2007, Formation of the 1300 km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model, Geology, 35, 179, 10.1130/G23193A.1 Li, 1995 Li, 1997, Discovery of radiolarians in the Amugang and Chasang groups and Lugu Formation in northern Tibet and some related geological problems, Geol. Rev., 43, 250 Li, 2005, Thought on some key geological problems in the Qiangtang area, Qinghai–Tibet Plateau, Geol. Bull. Chin., 24, 295 Li, 2006, Discovery of eclogite and its geological significance in Qiangtang area, central Tibet, Chin. Sci. Bull., 51, 1095, 10.1007/s11434-006-1095-3 Li, 2007, Establishment of the Upper Triassic Wanghuling Formation at Guoganjianian Mountain, central Qiangtang, Qinghai–Tibet Plateau, and its significance, Geol. Bull. Chin., 26, 1004 Li, 2008, Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold–rich porphyry copper deposit in Bangonghu belt, Tibet: Constraints on metallogenetic tectonic settings, Acta Petrol. Sin., 24, 531 Li, 2009, An important window for understanding the Qinghai–Tibet Plateau: a review on research progress in recent years of Qiangtang area, Tibet, Geol. Bull. Chin., 28, 1169 Li, 2013, Petrogenesis of ore–bearing porphyries from the Duolong porphyry Cu–Au deposit, central Tibet: Evidence from U–Pb geochronology, petrochemistry and Sr–Nd–Hf–O isotope characteristics, Lithos, 160–161, 216, 10.1016/j.lithos.2012.12.015 Li, 2014, Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate–felsic intrusions in central Tibet: petrogenetic and tectonic implications, Lithos, 198–199, 77, 10.1016/j.lithos.2014.03.025 Li, 2014, Northward subduction of Bangong–Nujiang Tethys: insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet, Lithos, 205, 284, 10.1016/j.lithos.2014.07.010 Li, 2014, A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: implications for magma evolution related to slab break-off and rollback in the Cretaceous, Earth Sci. Rev., 128, 232, 10.1016/j.earscirev.2013.09.007 Li, 2015, Application of integrated geological, geophysical and geochemical prospecting methods in Kongka Pb-Zn deposit in Ritu of Tibet, Min. Resour. Geol., 29, 379 Li, 2016, Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction, Lithos, 245, 34, 10.1016/j.lithos.2015.10.014 Li, 2016, The Nadun Cu–Au mineralization, central Tibet: root of a high sulfidation epithermal deposit, Ore Geol. Rev., 78, 371, 10.1016/j.oregeorev.2016.04.019 Li, 2016, Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156 ± 2 Ma from the north of Gerze, central Tibet: records of the Bangong-Nujiang oceanic ridge subduction during the Late Jurassic, Lithos, 262, 456, 10.1016/j.lithos.2016.07.029 Li, 2017, Origin and tectonic setting of the giant Duolong Cu–Au deposit, South Qiangtang Terrane, Tibet: evidence from geochronology and geochemistry of Early Cretaceous intrusive rocks, Ore Geol. Rev., 80, 61, 10.1016/j.oregeorev.2016.06.025 Li, 2017, Cretaceous magmatism and metallogeny in the Bangong–Nujiang metallogenic belt, central Tibet: evidence from petrogeochemistry, zircon U–Pb ages, and Hf–O isotopic compositions, Gondwana Res., 41, 110, 10.1016/j.gr.2015.09.006 Liang, 2012, Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: implications for the Late Triassic subduction of the Paleo-Tethys Ocean, Gondwana Res., 22, 470, 10.1016/j.gr.2011.11.012 Liu, 2014, Subduction of the Bangong–Nujiang Ocean: constraints from granites in the Bangong Co area, Tibet, Geol. J., 49, 188, 10.1002/gj.2510 Liu, 2016, Cambrian granitic gneiss within the central Qiangtang terrane, Tibetan Plateau: implications for the early Palaeozoic tectonic evolution of the Gondwanan margin, Int. Geol. Rev., 58, 1043, 10.1080/00206814.2016.1141329 Liu, 2017, Structure and development of the Changliangshan ductile shear zone, North Tibet: implications for the initial closure of the Paleo-Tethys Ocean in the central Qiangtang region, Int. J. Earth Sci., 106, 2945, 10.1007/s00531-017-1478-5 Liu, 2017, Zircon U–Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: implications for the subduction of the Bangong–Nujiang Tethyan Ocean, Gondwana Res., 41, 157, 10.1016/j.gr.2015.04.007 Liu, 2018, Early Carboniferous adakite-like and I-type granites in central Qiangtang, northern Tibet: implications for intra-oceanic subduction and back-arc basin formation within the Paleo-Tethys Ocean, Lithos, 296–299, 265, 10.1016/j.lithos.2017.11.005 Lu, 2012, A Brief Introduction to the mineral resources in the middle and western part of the Bangong–Nujiang Metallogenic Belt, Tibet Geol., 33, 47 Ma, 2015, Geological characteristics and significances of Bainong copper-gold deposit in Gaize county, Tibet. Geol. Surv. Chin., 2, 66 Martinod, 2005, Dynamical effects of subducting ridges: insights from 3-D laboratory models, Geophys. J. Int., 163, 1137, 10.1111/j.1365-246X.2005.02797.x Matte, 1996, Tectonics of Western Tibet, between the Tarimand the Indus, Earth Planet. Sci. Lett., 142, 311, 10.1016/0012-821X(96)00086-6 Mathur, 2000, Relationship between copper tonnage of Chilean base-metal porphyry deposits and Os isotope ratios, Geology, 28, 555, 10.1130/0091-7613(2000)28<555:RBCTOC>2.0.CO;2 McLemore, 1999, Geochemistry of the Copper Flat porphyry and associated deposits in the Hillsboro mining district, Sierra County, New Mexico, USA, J. Geochem. Explor., 67, 167, 10.1016/S0375-6742(99)00072-2 Meinert, 2005, World skarn deposits, Econ. Geol., 299 Metcalfe, 2006, Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context, Gondwana Res., 9, 24, 10.1016/j.gr.2005.04.002 Metcalfe, 2013, Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys, J. Asian Earth Sci., 66, 1, 10.1016/j.jseaes.2012.12.020 Middlemost, 1994, Naming materials in the magma/igneous rock system, Earth Sci. Rev., 37, 215, 10.1016/0012-8252(94)90029-9 Miller, 1999, Post-collisional potassic and ultrapotassic magmatism in SW Tibet, geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis, J. Petrol., 40, 1399, 10.1093/petroj/40.9.1399 Mišković, 2009, Crustal growth along a non-collisional cratonic margin: a Lu–Hf isotopic survey of the Eastern Cordilleran granitoids of Peru, Earth Planet. Sci. Lett., 279, 303, 10.1016/j.epsl.2009.01.002 Mo, 2007, Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet, Lithos, 96, 225, 10.1016/j.lithos.2006.10.005 Mori, 2007, Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt, Chem. Geol., 244, 452, 10.1016/j.chemgeo.2007.07.002 Mu, 2005, 1: 250,000 geological report of Jiacuo with geological map, Guizhou Inst. Geol. Surv., 1 Mungall, 2002, Roasting themantle: slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 30, 915, 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 Nimaciren, 2005, 103 Oncken, 2006, 1 Pan, 2004, 1 Pan, 2012, Tectonic evolution of the Qinghai–Tibet Plateau, J. Asian Earth Sci., 53, 3, 10.1016/j.jseaes.2011.12.018 Peng, 2014, Zircon U–Pb ages and Hf isotopic characteristics of granitic gneiss from Bunsumco, central Qiangtang, Qinghai–Tibet Plateau, Chin. Sci. Bull., 59, 2621 Peng, 2015, Late Triassic granitic magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau: geochronology, petrogenesis and implications for the tectonic evolution of the Paleo–Tethys, Gondwana Res., 27, 1494, 10.1016/j.gr.2014.01.009 Pullen, 2008, Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean, Geology, 36, 351, 10.1130/G24435A.1 Pullen, 2011, Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure, Geol. Soc. Am. Bull., 123, 585, 10.1130/B30154.1 Qin, 2015, The emplacement epoch, petrogenesis and geological significance of Gabuzha granodiorite at the southern edge of Qiangtang, Tibet, Geol. China, 42, 105 Richards, 2003, Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation, Econ. Geol. Bull. Soc. Econ. Geol., 98, 1515, 10.2113/gsecongeo.98.8.1515 Richards, 2009, Postsubduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere, Geology, 37, 247, 10.1130/G25451A.1 Richards, 2013, Giant ore deposits formed by optimal alignments and combinations of geological processes, Nat. Geosci., 6, 911, 10.1038/ngeo1920 Rickwood, 1989, Boundary lines within petrologic diagrams which use oxides of major and minor elements, Lithos, 22, 247, 10.1016/0024-4937(89)90028-5 Rollinson, 1993, 1 Romer, 2016, Phanerozoic tin and tungsten mineralization—tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting, Gondwana Res., 31, 60, 10.1016/j.gr.2015.11.002 Sato, 2012, Sedimentary crust and metallogeny of granitoid affinity: implications from the geotectonic histories of the Circum-Japan Sea region, Central Andes and southeastern Australia, Resour. Geol., 62, 329, 10.1111/j.1751-3928.2012.00200.x Sato, 2004, Crustal control on the redox state of granitoid magmas: tectonic implications from the granitoid and metallogenic provinces in the circum-Japan Sea Region, Geol. Soc. Am. Spec. Pap., 389, 319 Sengor, 1996, Tectonics of the Tethysides — orogenic collage development in a collisional setting, Annu. Rev. Earth Planet. Sci., 15, 213, 10.1146/annurev.ea.15.050187.001241 Shen, 2004, Sources and genesis of the Chinkuashih Au–Cu deposits in northern Taiwan: constraints from Os and Sr isotopic compositions of sulfides, Earth Planet. Sci. Lett., 222, 71, 10.1016/j.epsl.2004.02.029 Shi, 2008, The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone, J. Asian Earth Sci., 32, 438, 10.1016/j.jseaes.2007.11.011 Sillitoe, 1997, Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region, Aust. J. Earth Sci., 44, 373, 10.1080/08120099708728318 Soesoo, 1997, Divergent double subduction: tectonic and petrologic consequences, Geology, 25, 755, 10.1130/0091-7613(1997)025<0755:DDSTAP>2.3.CO;2 Stepanov, 2014, The key role of mica during igneous concentration of tantalum, Contrib. Mineral. Petrol., 167, 1009, 10.1007/s00410-014-1009-3 Sun, 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Lond. Spec. Publ., 42, 313, 10.1144/GSL.SP.1989.042.01.19 Sun, 2015, Achievements and prospects of regional geological survey in the east Aiyongcuo area, Tibet, Geol. Surv. Chin., 2, 13 Tang, 2016, Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit: the first ten million tons metal resources of a porphyry-epithermal deposit in Tibet, Acta Geosci. Sin., 37, 663 Wang, 2001, Disintegration and age metamorphic rocks in Qiangtang basement, Tibet, China, Sci. Chin. D, 44, 86, 10.1007/BF02911975 Wang, 2001, 1 Wang, 2002, Characteristics and age of the Dengqen ophiolite in Xizang (Tibet) and their geological significance, Acta Micropalaeontol. Sinica, 19, 417 Wang, 2013 Wang, 2017, Petrogenesis of Late Devonian–Early Carboniferous volcanic rocks in northern Tibet: new constraints on the Paleozoic tectonic evolution of the Tethyan Ocean, Gondwana Res., 41, 142, 10.1016/j.gr.2015.09.007 Wang, 2016, Evolution of the Bangong–Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites, Lithos, 245, 18, 10.1016/j.lithos.2015.07.016 Wang, 2016, Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: insights from zircon Hf-isotopic mapping, Earth Sci. Rev., 156, 39, 10.1016/j.earscirev.2016.02.008 Wei, 2017, Zircons LA-MC-ICP-MS U-Pb ages, petrochemical, petrological and its significance of the potassic monzonitic granite porphyry from the Duolong ore concentrated district, Gaize County, Xizang (Tibet), Geol. Rev., 63, 189 Wei, 2017, Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: record of slab breakoff that triggered ca. 108–113 Ma magmatism in the western Qiangtang terrane, J. Asian Earth Sci., 138, 588, 10.1016/j.jseaes.2016.12.010 Wilkinson, 2013, Triggers for the formation of porphyry ore deposits in magmatic arcs, Nat. Geosci., 6, 917, 10.1038/ngeo1940 Wu, 2013, 1–251 Wu, 1986, 1 Wu, 2000, Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China, Tectonophysics, 328, 89, 10.1016/S0040-1951(00)00179-7 Wu, 2003, Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis, Lithos, 66, 241, 10.1016/S0024-4937(02)00222-0 Wu, 2015, Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift, Acta Petrol. Sin., 31, 1 Wu, 2016, Tectonic shortening and crustal thickening in subduction zones: evidence from Middle–Late Jurassic magmatism in Southern Qiangtang, China, Gondwana Res., 39, 1, 10.1016/j.gr.2016.06.009 Wu, 2017, Highly fractionated granites: recognition and research, Sci. China Earth Sci., 10.1007/s11430-016-5139-1 Xie, 2009, Prospect evaluation and metallogenic features of the Bangong Lake Fe-Cu polymetallic mineralization belt in western Tibet, China, Geol. Bull. Chin., 28, 538 Xu, 1985, Magmatismand metamorphismin the Lhasa block (Tibet): a geochronological study, J. Geol., 93, 41, 10.1086/628918 Xu, 2015, Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides, J. Asian Earth Sci., 105, 320, 10.1016/j.jseaes.2015.01.021 Xu, 2017, Subduction of a spreading ridge within the Bangong Co–Nujiang Tethys Ocean: evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu–Au deposit, western Tibet, Gondwana Res., 41, 128, 10.1016/j.gr.2015.09.010 Yin, 2000, Geologic evolution of the Himalayan–Tibetan orogen, Annu. Rev. Earth Planet. Sci., 28, 211, 10.1146/annurev.earth.28.1.211 Yan, 2016, Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: Implications for the evolution of the Paleo- and Meso-Tethys, Gondwana Res., 39, 292, 10.1016/j.gr.2016.01.012 Yuan, 2011, Geological characteristics and genesis of the Kongka Pb-Zn deposit in Ngari Prefecture, West-China Explor. Eng., 23, 184 Zhai, 2011, Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic P–T path, Lithos, 125, 173, 10.1016/j.lithos.2011.02.004 Zhai, 2013, SHRIMP zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications, Lithos, 174, 28, 10.1016/j.lithos.2012.10.018 Zhai, 2013, Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U–Pb ages, geochemical and Sr–Nd–Hf isotopic characteristics, and tectonic implications, J. Asian Earth Sci., 63, 162, 10.1016/j.jseaes.2012.08.025 Zhai, 2015, Oldest paleo-Tethyan ophiolitic mélange in the Tibetan Plateau, Geol. Soc. Am. Bull., 128, 355, 10.1130/B31296.1 Zhang, 2010, Petrogenesis of the Nixiong pluton in Coqen, Tibet and its potential significance for the Nixong Fe-rich mineralization, Acta Petrol. Sin., 26, 1793 Zhang, 2011, Geochemistry and geochronology of the Caima granites in the western part of the Bangong Lake-Nujiang metallogenic zone, Xizang, Sediment. Geol. Tethyan Geol., 31, 86 Zhang, 2012, Tectonic evolution of the Qiangtang Block, northern Tibet during the Late Cisuralian (Late Early Permian): evidence from fusuline fossil records, Palaeogeogr. Palaeoclimatol. Palaeoecol., 350–352, 139, 10.1016/j.palaeo.2012.06.025 Zhang, 2012, Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision, Earth Sci. Rev., 114, 236, 10.1016/j.earscirev.2012.06.001 Zhang, 2014, Silurian high-pressure granulites from Central Qiangtang, Tibet: constraints on early Paleozoic collision along the northeastern margin of Gondwana, Earth Planet. Sci. Lett., 405, 39, 10.1016/j.epsl.2014.08.013 Zhang, 2017, Petrogenesis of the early Cretaceous Jiuqianxi I-type granitic pluton, Bangonghu-Nujiang metallogenic belt, northern Tibet, Chin. Min. Mag., 26, 162 Zhang, 2017, Chronology, geochemical characteristics of the Gaerqin porphyry copper deposit in the Duolong ore concentration area in Tibet and discussion about the identification of the lithoscaps and the possible epithermal deposit, Acta Petrol. Sin., 33, 476 Zhao, 2014, Origin and pre-Cenozoic evolution of the south Qiangtang basement, Central Tibet, Tectonophysics, 623, 52, 10.1016/j.tecto.2014.03.016 Zheng, 2015, Metallogeny of the northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt in the Lhasa terrane, southern Tibet, Ore Geol. Rev., 70, 510, 10.1016/j.oregeorev.2015.04.004 Zhou, 2013, Zircon U–Pb geochronology and trace element geochemistry of the ore-bearing porphyry in Qingcaoshan porphyry Cu-Au deposit, Tibet, and its geological significance, Acta Petrol. Sin., 29, 3755 Zhu, 2006, Identification for the OIB-type basalts in Central Qinghai-Tibetan Plateau: geochronology, geochemistry and their tectonic setting, Acta Geol. Sin., 80, 1312 Zhu, 2011, The Lhasa Terrane: record of a microcontinent and its histories of drift and growth, Earth Planet. Sci. Lett., 301, 241, 10.1016/j.epsl.2010.11.005 Zhu, 2011, Re-Os dating for the molybdenite from Bolong porphyry copper-gold deposit in Tibet, China and its geological significance, Acta Petrol. Sin., 27, 2159 Zhu, 2013, The origin and pre-Cenozoic evolution of the Tibetan Plateau, Gondwana Res., 23, 1429, 10.1016/j.gr.2012.02.002 Zhu, 2016, Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction, Lithos, 245, 7, 10.1016/j.lithos.2015.06.023