Template-Based Modelling of the Structure of Fungal Effector Proteins
Springer Science and Business Media LLC - Trang 1-30 - 2023
Tóm tắt
The discovery of new fungal effector proteins is necessary to enable the screening of cultivars for disease resistance. Sequence-based bioinformatics methods have been used for this purpose, but only a limited number of functional effector proteins have been successfully predicted and subsequently validated experimentally. A significant obstacle is that many fungal effector proteins discovered so far lack sequence similarity or conserved sequence motifs. The availability of experimentally determined three-dimensional (3D) structures of a number of effector proteins has recently highlighted structural similarities amongst groups of sequence-dissimilar fungal effectors, enabling the search for similar structural folds amongst effector sequence candidates. We have applied template-based modelling to predict the 3D structures of candidate effector sequences obtained from bioinformatics predictions and the PHI-BASE database. Structural matches were found not only with ToxA- and MAX-like effector candidates but also with non-fungal effector-like proteins—including plant defensins and animal venoms—suggesting the broad conservation of ancestral structural folds amongst cytotoxic peptides from a diverse range of distant species. Accurate modelling of fungal effectors were achieved using RaptorX. The utility of predicted structures of effector proteins lies in the prediction of their interactions with plant receptors through molecular docking, which will improve the understanding of effector–plant interactions.
Tài liệu tham khảo
Stergiopoulos, I., & de Wit, P. J. G. M. (2009). Fungal effector proteins. Annual Review of Phytopathology, 47(1), 233–263. https://doi.org/10.1146/annurev.phyto.112408.132637
Ballance, G. M., Lamari, L., & Bernier, C. C. (1989). Purification and characterization of a host-selective necrosis toxin from Pyrenophora tritici repentis. Physiological and Molecular Plant Pathology, 35(3), 203–213. https://doi.org/10.1016/0885-5765(89)90051-9
Jones, D. A. B., Moolhuijzen, P. M., & Hane, J. K. (2021). Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microbial Genomics, 7(9), 000637. https://doi.org/10.1099/MGEN.0.000637
Kanja, C., & Hammond-Kosack, K. E. (2020). Proteinaceous effector discovery and characterization in filamentous plant pathogens. Molecular Plant Pathology. https://doi.org/10.1111/mpp.12980
Hane, J. K., Rouxel, T., Howlett, B. J., Kema, G. H., Goodwin, S. B., & Oliver, R. P. (2011). A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biology, 12(5), R45. https://doi.org/10.1186/gb-2011-12-5-r45
Testa, A. C., Oliver, R. P., & Hane, J. K. (2016). OcculterCut: A comprehensive survey of at-rich regions in fungal genomes. Genome Biology and Evolution. https://doi.org/10.1093/gbe/evw121
Bertazzoni, S., Williams, A. H., Jones, D. A., Syme, R. A., Tan, K.-C., & Hane, J. K. (2018). Accessories make the outfit: Accessory chromosomes and other dispensable DNA regions in plant-pathogenic fungi. Molecular Plant-Microbe Interactions, 31(8), 779–788. https://doi.org/10.1094/mpmi-06-17-0135-fi
Liu, L., Xu, L., Jia, Q., Pan, R., Oelmüller, R., Zhang, W., & Wu, C. (2019). Arms race: Diverse effector proteins with conserved motifs. Plant Signaling and Behavior, 14(2), 1557008. https://doi.org/10.1080/15592324.2018.1557008
Sperschneider, J., & Dodds, P. N. (2022). EffectorP 3.0: Prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Molecular Plant-Microbe Interactions, 35(2), 146–156. https://doi.org/10.1094/MPMI-08-21-0201-R
Jones, D. A. B., Rozano, L., Debler, J. W., Mancera, R. L., Moolhuijzen, P. M., & Hane, J. K. (2021). An automated and combinative method for the predictive ranking of candidate effector proteins of fungal plant pathogens. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-99363-0
de Guillen, K., Ortiz-Vallejo, D., Gracy, J., Fournier, E., Kroj, T., & Padilla, A. (2015). Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLoS Pathogens, 11(10), e1005228. https://doi.org/10.1371/journal.ppat.1005228
Pennington, H. G., Jones, R., Kwon, S., Bonciani, G., Thieron, H., Chandler, T., Luong, P., Morgan, S. N., Przydacz, M., Bozkurt, T., Bowden, S., Craze, M., Wallington, E. J., Garnett, J., Kwaaitaal, M., Panstruga, R., Cota, E., & Spanu, P. D. (2019). The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathogens, 15(3), e1007620. https://doi.org/10.1371/journal.ppat.1007620
de Guillen, K., Lorrain, C., Tsan, P., Barthe, P., Petre, B., Saveleva, N., Rouhier, N., Duplessis, S., Padilla, A., & Hecker, A. (2019). Structural genomics applied to the rust fungus Melampsora larici populina reveals two candidate effector proteins adopting cysteine knot and NTF2-like protein folds. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-53816-9
Outram, M. A., Sung, Y. C., Yu, D., Dagvadorj, B., Rima, S. A., Jones, D. A., Ericsson, D. J., Sperschneider, J., Solomon, P. S., Kobe, B., & Williams, S. J. (2021). The crystal structure of SnTox3 from the necrotrophic fungus Parastagonospora nodorum reveals a unique effector fold and provides insight into Snn3 recognition and pro-domain protease processing of fungal effectors. New Phytologist, 231(6), 2282–2296. https://doi.org/10.1111/nph.17516
Jones, D. A., Bertazzoni, S., Turo, C. J., Syme, R. A., & Hane, J. K. (2018). Bioinformatic prediction of plant–pathogenicity effector proteins of fungi. Current Opinion in Microbiology. https://doi.org/10.1016/j.mib.2018.01.017
Urban, M., Cuzick, A., Seager, J., Wood, V., Rutherford, K., Venkatesh, S. Y., Silva, D. N., Martinez, M. C., Pedro, H., Yates, A. D., Hassani-Pak, K., & Hammond-Kosack, K. E. (2020). PHI-base: The pathogen–host interactions database. Nucleic Acids Research, 48(D1), D613–D620. https://doi.org/10.1093/nar/gkz904
Andreeva, A., Kulesha, E., Gough, J., & Murzin, A. G. (2020). The SCOP database in 2020: Expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Research, 48(D1), D376–D382. https://doi.org/10.1093/nar/gkz1064
Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zidek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Florian, T. H., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
Yang, J., & Zhang, Y. (2015). Protein structure and function prediction using I-TASSER. Current Protocols in Bioinformatics. https://doi.org/10.1002/0471250953.bi0508s52
Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522. https://doi.org/10.1038/nprot.2012.085
Källberg, M., Margaryan, G., Wang, S., Ma, J., & Xu, J. (2014). RaptorX server: A resource for template-based protein structure modeling (pp. 17–27). Humana Press. https://doi.org/10.1007/978-1-4939-0366-5_2.
Hilbert, M., Böhm, G., & Jaenicke, R. (1993). Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins: Structure, Function, and Bioinformatics, 17(2), 138–151. https://doi.org/10.1002/PROT.340170204
Seong, K., & Krasileva, K. V. (2021). Computational structural genomics unravels common folds and predicted functions in the secretome of fungal phytopathogen Magnaporthe oryzae. bioRxiv. https://doi.org/10.1101/2021.01.25.427855
Urban, M., Cuzick, A., Rutherford, K., Irvine, A., Pedro, H., Pant, R., Sadanadan, V., Khamari, L., Billal, S., Mohanty, S., & Hammond-Kosack, K. E. (2017). PHI-base: A new interface and further additions for the multi-species pathogen–host interactions database. Nucleic Acids Research, 45(D1), D604–D610. https://doi.org/10.1093/nar/gkw1089
Sperschneider, J., Gardiner, D. M., Dodds, P. N., Tini, F., Covarelli, L., Singh, K. B., Manners, J. M., & Taylor, J. M. (2016). EffectorP: Predicting fungal effector proteins from secretomes using machine learning. New Phytologist, 210(2), 743–761. https://doi.org/10.1111/nph.13794
Sperschneider, J., Dodds, P. N., Gardiner, D. M., Singh, K. B., & Taylor, J. M. (2018). Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Molecular Plant Pathology, 19(9), 2094–2110. https://doi.org/10.1111/mpp.12682
Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/nmeth.1701
Hall, T. (2011). BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2(1), 60–61. https://www.papers3://publication/uuid/4460861E-549E-43BE-B977-98C413BDC457
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Peng, J., & Xu, J. (2011). RaptorX: Exploiting structure information for protein alignment by statistical inference. Proteins: Structure, Function and Bioinformatics, 79(Suppl. 10), 161–171. https://doi.org/10.1002/prot.23175
Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/nar/gki524
Xu, J., & Zhang, Y. (2010). How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics, 26(7), 889–895. https://doi.org/10.1093/bioinformatics/btq066
Orengo, C., Michie, A., Jones, S., Jones, D., Swindells, M., & Thornton, J. (1997). CATH—A hierarchic classification of protein domain structures. Structure, 5(8), 1093–1109. https://doi.org/10.1016/S0969-2126(97)00260-8
Knudsen, M., & Wiuf, C. (2010). The CATH database. Human Genomics, 4(3), 207–212. https://doi.org/10.1186/1479-7364-4-3-207
Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995). SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247(4), 536–540. https://doi.org/10.1016/S0022-2836(05)80134-2
Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/s0021889892009944
Praz, C. R., Bourras, S., Zeng, F., Sánchez-Martín, J., Menardo, F., Xue, M., Yang, L., Roffler, S., Boni, R., Herren, G., McNally, K. E., Ben-David, R., Parlange, F., Oberhaensli, S., Fluckiger, S., Schafer, L. K., Wicker, T., Yu, D., & Keller, B. (2017). AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. New Phytologist, 213(3), 1301–1314. https://doi.org/10.1111/nph.14372
Bauer, S., Yu, D., Lawson, A. W., Saur, I. M. L., Frantzeskakis, L., Kracher, B., Logemann, E., Chai, J., Maekawa, T., & Schulze-Lefert, P. (2021). The leucine-rich repeats in allelic barley MLA immune receptors define specificity towards sequence-unrelated powdery mildew avirulence effectors with a predicted common RNase-like fold. PLoS Pathogens, 17(2), e1009223. https://doi.org/10.1371/JOURNAL.PPAT.1009223
Manser, B., Koller, T., Praz, C. R., Roulin, A. C., Zbinden, H., Arora, S., Steuernagel, B., Wulff, B. B. H., Keller, B., & Sánchez-Martín, J. (2021). Identification of specificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2. Plant Journal, 106(4), 993–1007. https://doi.org/10.1111/tpj.15214
Sharpee, W., Oh, Y., Yi, M., Franck, W., Eyre, A., Okagaki, L. H., Valent, B., & Dean, R. A. (2017). Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae. Molecular Plant Pathology, 18(6), 850–863. https://doi.org/10.1111/mpp.12449
Rawlings, N. D., & Barrett, A. J. (1995). [13] Evolutionary families of metallopeptidases. Methods in Enzymology, 248(C), 183–228. https://doi.org/10.1016/0076-6879(95)48015-3
Sanz-Martín, J. M., Pacheco-Arjona, J. R., Bello-Rico, V., Vargas, W. A., Monod, M., Díaz-Mínguez, J. M., Thon, M. R., & Sukno, S. A. (2016). A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Molecular Plant Pathology, 17(7), 1048–1062. https://doi.org/10.1111/mpp.12347
Brunette, T. J., Parmeggiani, F., Huang, P. S., Bhabha, G., Ekiert, D. C., Tsutakawa, S. E., Hura, G. L., Tainer, J. A., & Baker, D. (2015). Exploring the repeat protein universe through computational protein design. Nature, 528(7583), 580–584. https://doi.org/10.1038/nature16162
Castillo, R. M., Mizuguchi, K., Dhanaraj, V., Albert, A., Blundell, T. L., & Murzin, A. G. (1999). A six-stranded double-psi β barrel is shared by several protein superfamilies. Structure, 7(2), 227–236. https://doi.org/10.1016/S0969-2126(99)80028-8
Bollati, M., Villa, R., Gourlay, L. J., Benedet, M., Dehò, G., Polissi, A., Barbiroli, A., Martorana, A. M., Sperandeo, P., Bolognesi, M., & Nardini, M. (2015). Crystal structure of LptH, the periplasmic component of the lipopolysaccharide transport machinery from Pseudomonas aeruginosa. FEBS Journal, 282(10), 1980–1997. https://doi.org/10.1111/febs.13254
Ge, H., Chen, X., Yang, W., Niu, L., & Teng, M. (2013). Crystal structure of wild-type and mutant human Ap4A hydrolase. Biochemical and Biophysical Research Communications, 432(1), 16–21. https://doi.org/10.1016/J.BBRC.2013.01.095
Li, Y., Han, Y., Qu, M., Chen, J., Chen, X., Geng, X., Wang, Z., & Chen, S. (2020). Apoplastic cell death-inducing proteins of filamentous plant pathogens: Roles in plant–pathogen interactions. Frontiers in Genetics, 11, 661. https://doi.org/10.3389/fgene.2020.00661
Shirke, M. D., Mahesh, H. B., & Gowda, M. (2016). Genome-wide comparison of Magnaporthe species reveals a host-specific pattern of secretory proteins and transposable elements. PLoS ONE, 11(9), e0162458. https://doi.org/10.1371/JOURNAL.PONE.0162458
Kulkarni, R. D., Kelkar, H. S., & Dean, R. A. (2003). An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends in Biochemical Sciences, 28(3), 118–121. https://doi.org/10.1016/S0968-0004(03)00025-2
Nasser, L., Weissman, Z., Pinsky, M., Amartely, H., Dvir, H., & Kornitzer, D. (2016). Structural basis of haem-iron acquisition by fungal pathogens. Nature Microbiology, 1(11), 1–10. https://doi.org/10.1038/nmicrobiol.2016.156
Achari, S. R., Edwards, J., Mann, R. C., Kaur, J. K., Sawbridge, T., & Summerell, B. A. (2021). Comparative transcriptomic analysis of races 1, 2, 5 and 6 of Fusarium oxysporum f. sp. pisi in a susceptible pea host identifies differential pathogenicity profiles. BMC Genomics, 22(1), 1–18. https://doi.org/10.1186/S12864-021-08033-Y
Carresi, L., Pantera, B., Zoppi, C., Cappugi, G., Oliveira, A. L., Pertinhez, T. A., Spisni, A., Scala, A., & Pazzagli, L. (2006). Cerato-platanin, a phytotoxic protein from Ceratocystis fimbriata: Expression in Pichia pastoris, purification and characterization. Protein Expression and Purification, 49(2), 159–167. https://doi.org/10.1016/j.pep.2006.07.006
Zhang, P., Li, K., Yang, G., Xia, C., Polston, J. E., Li, G., Li, S., Lin, Z., Yang, L., Bruner, S. D., & Ding, Y. (2017). Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 8980–8985. https://doi.org/10.1073/pnas.1706894114
Tanaka, S., Schweizer, G., Rössel, N., Fukada, F., Thines, M., & Kahmann, R. (2018). Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Nature Microbiology, 4(2), 251–257. https://doi.org/10.1038/s41564-018-0304-6
Pao, G. M., & Saier, M. H. (1995). Response regulators of bacterial signal transduction systems: Selective domain shuffling during evolution. Journal of Molecular Evolution, 40(2), 136–154. https://doi.org/10.1007/BF00167109
Wolanin, P. M., Webre, D. J., & Stock, J. B. (2003). Mechanism of phosphatase activity in the chemotaxis response regulator CheY. Biochemistry, 42(47), 14075–14082. https://doi.org/10.1021/bi034883t
Mosquera, G., Giraldo, M. C., Khang, C. H., Coughlan, S., & Valent, B. (2009). Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. The Plant Cell, 21(4), 1273–1290. https://doi.org/10.1105/TPC.107.055228
Rozano, L., Mukuka, Y. M., Hane, J. K., & Mancera, R. L. (2023). Ab initio modelling of the structure of ToxA-like and MAX fungal effector proteins. International Journal of Molecular Sciences.
Sarma, G. N., Manning, V. A., Ciuffetti, L. M., & Karplus, P. A. (2005). Structure of Ptr ToxA: An RGD-containing host-selective toxin from Pyrenophora tritici repentis. The Plant Cell, 17(11), 3190–3202. https://doi.org/10.1105/TPC.105.034918
Amoozadeh, S., Johnston, J., & Meisrimler, C. N. (2021). Exploiting structural modelling tools to explore host-translocated effector proteins. International Journal of Molecular Sciences, 22(23), 12962. https://doi.org/10.3390/IJMS222312962
Schoonman, M. J. L., Knegtel, R. M. A., & Grootenhuis, P. D. J. (1998). Practical evaluation of comparative modelling and threading methods. Computers and Chemistry, 22(5), 369–375. https://doi.org/10.1016/S0097-8485(98)00006-0