Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes

V. I. Perminov1, A. I. Semenov1, И. В. Медведева2, N. N. Pertsev1
1Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
2Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Atmosfera: spravochnik (Atmosphere: A handbook), Sedunov, Yu.S., Ed., Leningrad: Gidrometeoizdat, 1991.

Bakanas, V.V., Perminov, V.I., and Semenov, A.I., Seasonal variations of emission characteristics of the mesopause hydroxyl with different vibrational excitation, Adv. Space Res., 2003, vol. 32, no. 5, pp. 765–770.

Baker, D.J. and Stair, A.T., Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr., 1988, no. 37, pp. 611–622.

Bates, D.R. and Nicolet, M., The photochemistry of atmospheric water vapour, J. Geophys. Res., 1950, vol. 55, pp. 301–327.

Beig, G., Trends in the mesopause region temperature and our present understanding: An update, Phys. Chem. Earth, 2006, vol. 31, no. 1, pp. 3–9.

Bittner, M., Offermann, D., Graef, H.-H., Donner, M., and Hamilton, K., An 18-year time series of OH rotational temperatures and middle atmosphere decadal variations, J. Geophys. Res., 2002, vol. 64, pp. 1147–1166.

Brasseur, G. and Solomon, S., Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, third ed., Dordrecht: Springer, 2005.

Burns, G.B., French, W.J.R., Greet, P.A., Phillips, F.A., Williams, P.F.B., Finlayson, K., and Klich, G., Seasonal variations and inter-year trends in 7 years of hydroxyl airglow rotational temperatures at Davis station (69°S, 78° E), Antarctica, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, no. 8–11, pp. 1167–1174.

Chunchuzov, I.P., On possible generation mechanism for nonstationary mountain waves in the atmosphere, J. Atmos. Sci., 1994, vol. 15, pp. 2196–2206.

Clemesha, B.R., Takahashi, H., and Batista, P.P., Mesopause temperatures at 23° S, J. Geophys. Res., 1990, vol. 95, no. D6, pp. 7677–7681.

Friedman, J.S. and Chu, X., Nocturnal temperature structure in the mesopause region over the Arecibo Observatory (18.35° N, 66.75° W): Seasonal variations, J. Geophys. Res., 2007, vol. 112, no. D14107. doi: 10.1029/2006JD008220

Fritts, D.C. and Luo, Z., Dynamical and radiative forcing of the summer mesopause circulation and thermal structure. 1. Mean solstice conditions, J. Geophys. Res., 1995, vol. 100, pp. 3119–3128.

Gao, H., Xu, J., and Wu, Q., Seasonal and QBO variations in the OH nightglow emission observed by TIMED/SABER, J. Geophys. Res., 2010, vol. 115, no. A06313. doi:10.1029/2009JA014641

Gavrilov, N.M. and Jacobi, Ch., A study of seasonal variations of gravity wave intensity in the lower thermosphere using LF D1 wind observations and a numerical model, Ann. Geophys., 2004, vol. 22, no. 1, pp. 35–45.

Gerding, M., Höffner, J., Lautenbach, J., Rauthe, M., and Lübken, F.-J., Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar, Atmos. Chem. Phys., 2008, vol. 8, no. 24, pp. 7465–7482.

Gossard, E. and Hooke, W., Waves in the Atmosphere, Amsterdam: Elsevier, 1975.

Hocking, W.K., The dynamical parameters of turbulence theory as they apply to middle atmospheric studies, Earth Planet. Space, 1999, vol. 51, no. 7–8, pp. 525–541.

Höppner, K. and Bittner, M., Evidence for solar signals in the mesopause temperature variability?, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, no. 4–5, pp. 431–448.

Langhoff, S.R., Werner, H.J., and Rosmus, P., Theoretical transition probabilities for the OH Meinel system, J. Mol. Spectrosc., 1986, vol. 118, no. 4, pp. 507–529.

Lopez-Gonzalez, M.J., Rodriguez, E., Wiens, R.H., et al., Seasonal variations of O2 atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations, Ann. Geophys., 2004, vol. 22, pp. 819–828.

Mulligan, F.J., Horgan, D.F., Galligan, J.G., and Griffin, E.M., Mesopause temperatures and integrated band brightnesses calculated from airglow OH emissions recorded at Maynooth (53.2° N, 6.4° W) during 1993, J. Atmos. Terr. Phys., 1995, vol. 57, no. 13, pp. 1623–1637.

Niciejewski, R.J. and Killeen, T.L., Annual and semiannual temperature oscillations in the upper mesosphere, Geophys. Res. Lett., 1995, vol. 22, no. 23, pp. 3243–3246.

Offermann, D., Jarisch, M., Donner, M., Steinbrecht, W., and Semenov, A.I., OH temperature re-analysis forced by recent variance increases, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, no. 17, pp. 19324–19334.

Offermann, D., Gusev, O., Donner, M., Forbes, J.M., Hagan, M., Mlynczak, M.G., Oberheide, J., Preusse, P., Schmidt, H., and Russel, J.M. III, Relative intensities of middle atmosphere waves, J. Geophys. Res., 2009, vol. 114, p. D06110. doi:10.1029/2008JD010662

Offermann, D., Hoffmann, P., Knieling, P., Koppmann, R., Oberheide, J., and Steinbrecht, W., Long-term trends and solar cycle variations of mesospheric temperature and dynamics, J. Geophys. Res., 2010, vol. 115, p. D18127. doi:10.1029/2009JD013363

Offermann, D., Wintel, J., Kalicinsky, Ch., Knieling, P., Koppmann, R., and Steinbrech, W., Long-term development of short period gravity waves in Middle Europe, J. Geophys. Res., 2011, vol. 116, p. D00P07. doi:10.1029/2010JD015544

Perminov, V.I., Seasonal temperature variations near the mesopause according to the hydroxyl emission measurements in Zvenigorod, Geomagn. Aeron., 2009, no. 6, pp. 797–804.

Perminov, V.I., Lowe, R.P., and Pertsev, N.N., Longitudinal variations in the hydroxyl nightglow, Adv. Space, Res., 1999, vol. 24, no. 11, pp. 1609–1612.

Perminov, V.I., Semenov, A.I., and Shefov, N.N., On rotational temperature of the hydroxyl emission, Geomagn. Aeron., 2007, no. 6, pp. 756–763.

Pertsev, N. and Perminov, V., Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia, Ann. Geophys., 2008, vol. 26, no. 5, pp.1049–1056.

Pertsev, N.N. and Perminov, V.I., Variations in the mesopause characteristics and temperature during stratospheric warming events, Mezhdunarodnyi symposium “Atmosfernaya radiatsiya i dinamika” (Int. Symposium “Atmospheric Radiation and Dynamics”), St. Petersburg, 2011, pp. 186–187.

Rauthe, M., Gerding, M., and Lubken, F.-J., Seasonal changes in gravity wave activity measured by lidars at midlatitudes, Atmos. Chem. Phys., 2008, vol. 8, pp. 6775–6787.

Reisin, E.R. and Scheer, J., Gravity wave activity in the mesopause region from airglow measurements at El Leoncito, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, pp. 655–661.

Reisin, E.R. and Scheer, J., Evidence of change after 2001 in the seasonal behavior of the mesopause region from airglow data at El Leoncito, Adv. Space. Res., 2009, vol. 44, no. 3, pp. 401–412.

Semenov, A.I., Bakanas, V.V., Perminov, V.I., Zheleznov, Yu.A., and Khomich, V.Yu., The near infrared spectrum of the emission of the nighttime upper atmosphere of the Earth, Geomagn. Aeron., 2002, vol. 42, no. 3, pp. 390–397.

Senft, D.C., Papen, G.C., Gardner, C.S., Yu, J.R., Krueger, D.A., and She, C.Y., Seasonal variations of the thermal structure of the mesopause region at Urbana, IL (40° N, 88° W) and Ft. Collins, CO (41° N, 105° W), Geophys. Res. Lett., 1994, vol. 21, no. 9, pp. 821–824.

Shefov, N.N., Relations between the hydroxyl emission of the upper atmosphere and the stratospheric warmings, Gerlands Beitr. Geophys., 1973, vol. 82, no. 2, pp. 111–114.

Shefov, N.N., Semenov, A.I., and Khomich, V.Yu., Izluchenie atmosfery kak indikator struktury i dinamiki verkhnei atmosfery (Atmospheric Emission as an Indicator of the Structure and Dynamics of the Upper Atmosphere), Moscow: Geos, 2006.

Smith, A.K., Physics and chemistry of the mesopause region, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, pp. 839–857.

Vitinsky, Yu.I., Kopetsky, M., and Kuklin, G.V., Statistika pyatnoobrazovatel’noi deyatel’nosti Solntsa (Sunspot Formation Statistics), Moscow: Nauka, 1986.

Vlasov, M.N. and Kelley, M.C., Estimates of eddy turbulence consistent with seasonal variations of atomic oxygen and its possible role in the seasonal cycle of mesopause temperature, Ann. Geophys., 2010, vol. 28, no. 11, pp. 2103–2110.