Temperature resolved release of inorganic compounds from biomass

Fuel - Tập 357 - Trang 129939 - 2024
Hendrik Mörtenkötter1, Carolin Heilmeier1, Thorben de Riese1, Sebastian Fendt1, Hartmut Spliethoff1
1Chair of Energy Systems, Technical University Munich, Boltzmannstr. 15, Garching b. Munich 85748, Germany

Tài liệu tham khảo

Intergovernmental Panel on Climate Change, “Summary for Policymakers,” 2021. Intergovernmental Panel on Climate Change, 2022 United Nations, “Paris Agreement,” 2015. Kaltschmitt, 2016 Spliethoff, 2010 Florian Kerscher, Experimentelle Untersuchung der Alkalifreisetzung und -minderung bei der Verbrennung und Vergasung von Festbrennstoffen, 2021. Gundula Balan, Untersuchungen des Partikelverhaltens und der Hochtemperatur-Chlorkorrosion bei der Flugstromverbrennung mit dotierten Brennstoffen, 2014. Marschner, 2012 Kleinhans, 2018, Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior, Prog Energy Combust Sci, 68, 65, 10.1016/j.pecs.2018.02.001 Wang, 2012, A Critical Review on Additives to Reduce Ash Related Operation Problems in Biomass Combustion Applications, Energy Procedia, 20, 20, 10.1016/j.egypro.2012.03.004 Damoe, 2014, Impact of Coal Fly Ash Addition on Combustion Aerosols (PM 2.5) from Full-Scale Suspension-Firing of Pulverized Wood, Energy Fuels, 28, 3217, 10.1021/ef5003815 Thy, 2000, Experimental determination of high-temperature elemental losses from biomass slag, Fuel, 79, 693, 10.1016/S0016-2361(99)00195-7 Thy, 1999, High-Temperature Melting Behavior of Urban Wood Fuel Ash, Energy Fuels, 13, 839, 10.1021/ef980249q Glarborg, 2003, Johnsson, “Fuel nitrogen conversion in solid fuel fired systems”, Prog Energy Combust Sci, 29, 89, 10.1016/S0360-1285(02)00031-X H. Ohtake and S. Tsuneda, Eds., Phosphorus Recovery and Recycling, 1st ed. Singapore: Springer Singapore; Imprint: Springer, 2019. Bundesregierung, Verordnung zur Neuordnung der Klärschlammverwertung, 2017. Kurzweil, 2015 Ivan Griffin, Example: Periodic Table of Chemical Elements. [Online]. Available: https://texample.net/tikz/examples/periodic-table-of-chemical-elements/ (accessed: May 30 2022). van Lith, 2008, Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition, Energy Fuels, 22, 1598, 10.1021/ef060613i van Lith, 2006, Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 1: Development and Evaluation of Quantification Methods, Energy Fuels, 20, 964, 10.1021/ef050131r Cao, 2022, Evaluation of the effects and interactions of initial chlorine and sulphur contents on the release of potassium compounds during biomass combustion, J Energy Inst, 101, 178, 10.1016/j.joei.2022.01.014 Mason, 2016, Observations on the release of gas-phase potassium during the combustion of single particles of biomass, Fuel, 182, 110, 10.1016/j.fuel.2016.05.077 Johansen, 2011, Release of K, Cl, and S during Pyrolysis and Combustion of High-Chlorine Biomass, Energy Fuels, 25, 4961, 10.1021/ef201098n Knudsen, 2004, Transformation and Release to the Gas Phase of Cl, K, and S during Combustion of Annual Biomass, Energy Fuels, 18, 1385, 10.1021/ef049944q Misra, 1993, Wood ash composition as a function of furnace temperature, Biomass Bioenergy, 4, 103, 10.1016/0961-9534(93)90032-Y Wang, 2017, Release of Potassium During Devolatilization of Spruce Bark, Energy Procedia, 105, 1295, 10.1016/j.egypro.2017.03.463 Tchoffor, 2013, Transformation and Release of Potassium, Chlorine, and Sulfur from Wheat Straw under Conditions Relevant to Dual Fluidized Bed Gasification, Energy Fuels, 27, 7510, 10.1021/ef401703a Jensen, 2000, Experimental Investigation of the Transformation and Release to Gas Phase of Potassium and Chlorine during Straw Pyrolysis, Energy Fuels, 14, 1280, 10.1021/ef000104v Okuno, 2005, Primary Release of Alkali and Alkaline Earth Metallic Species during the Pyrolysis of Pulverized Biomass, Energy Fuels, 19, 2164, 10.1021/ef050002a Mousavi, 2023, Numerical Study and Experimental Verification of Biomass Conversion and Potassium Release in a 140 kW Entrained Flow Gasifier, Energy Fuels, 37, 1116, 10.1021/acs.energyfuels.2c03107 French RJ, Dayton DC, Milne TA. The direct observation of alkali vapor species in biomass combustion and gasification. 1994, http://doi.org/10.2172/10115003. Frandsen F. Ash Formation, Deposition and Corrosion When Utilizing Straw for Heat and Power Production, 2011. Dayton, 1999, Release of Inorganic Constituents from Leached Biomass during Thermal Conversion, Energy Fuels, 13, 860, 10.1021/ef980256e Mousavi, 2023, A multi-step predictive model for the release and transformation of K-Cl-S-containing species from biomass, Combust Flame, 247, 10.1016/j.combustflame.2022.112512 de Riese, 2022, Modelling the Capture of Potassium by Solid Al-Si Particles at Pulverised Fuel Conditions, Fuel, 328, 10.1016/j.fuel.2022.125321 Grimm, 2012, Influence of Phosphorus on Alkali Distribution during Combustion of Logging Residues and Wheat Straw in a Bench-Scale Fluidized Bed, Energy Fuels, 26, 3012, 10.1021/ef300275e 16967 Biogene Festbrennstoffe – Bestimmung von Hauptelementen – Al, Ca, Fe, Mg, P, K, Si, Na und Ti (ISO 16967:2015); Deutsche Fassung EN ISO 16967:2015, DIN EN ISO. Bläsing, 2013, Influence of the particle size on the release of inorganic trace elements during gasification of biomass pellets, Fuel, 111, 791, 10.1016/j.fuel.2013.03.073 Bläsing, 2013, Investigation of the effect of alkali metal sorbents on the release and capture of trace elements during combustion of straw, Combust Flame, 160, 3015, 10.1016/j.combustflame.2013.08.005 Dayton, 1996, Direct Observation of Alkali Vapor Release during Biomass Combustion and Gasification. 2. Black Liquor Combustion at 1100 °C, Energy Fuels, 10, 284, 10.1021/ef950210a Porbatzki D. Freisetzung anorganischer Spezies bei der thermochemischen Umwandlung biogener Festbrennstoffe, 2008. Sommersacher, 2015, Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 1: Experimental Setup-Implementation and Evaluation, Energy Fuels, 29, 6734, 10.1021/acs.energyfuels.5b00621 Sommersacher, 2016, Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 2: Results from Test Runs with Spruce and Straw Pellets, Energy Fuels, 30, 3428, 10.1021/acs.energyfuels.5b02766 Jones, 2007, An investigation of the thermal and catalytic behaviour of potassium in biomass combustion, Proc Combust Inst, 31, 1955, 10.1016/j.proci.2006.07.093 Mason, 2017, Gas phase potassium release from a single particle of biomass during high temperature combustion, Proc Combust Inst, 36, 2207, 10.1016/j.proci.2016.06.020 Mason, 2015, Single particle flame-combustion studies on solid biomass fuels, Fuel, 151, 21, 10.1016/j.fuel.2014.11.088 Clery, 2018, The effects of an additive on the release of potassium in biomass combustion, Fuel, 214, 647, 10.1016/j.fuel.2017.11.040 TorrCoal Technology B.V., Input raw materials – torrefaction process – output product: Datasheet. [Online]. Available: https://www.torrcoal.com/download/input-raw-materials-torrefaction-process-output-product/ (accessed: Apr. 20 2023). Detcheva, 2009, Calibration possibilities and modifier use in ETV ICP OES determination of trace and minor elements in plant materials, Anal Bioanal Chem, 394, 1485, 10.1007/s00216-009-2835-4 Peter Perzl, Elektrothermischer Verdampfer ETV 4000, 2019. Carey, 1992, Electrothermal Vaporization for Sample Introduction in Plasma Source Spectrometry, Crit Rev Anal Chem, 23, 397, 10.1080/10408349208051652 Hassler, 2016, Determination of 22 trace elements in high-purity copper including Se and Te by ETV-ICP OES using SF 6 NF 3 CF 4 and H 2 as chemical modifiers, J Anal At Spectrom, 31, 642, 10.1039/C5JA00240K Hommel, 2022, Continuous measurement of K and S release by means of ETV-ICP OES for high-temperature coal conversion processes, Fuel, 316, 10.1016/j.fuel.2022.123292 Mörtenkötter, 2023, Validation of Electrothermal Vaporization for the Analysis of Biomass Samples and Comparison with Other Methods of Analysis, Waste Biomass Valoriz, 10.1007/s12649-023-02129-0 International Plant-Analytical Exchange, “Certificate of Analysis IPE-638,” vol. 1998. Tord Hansen, “Chemische und thermische Zersetzung von Ammoniumsulfat zu Ammoniak und Schwefelsäure,”. Insititut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, GESTIS-Stoffdatenbank Silber. [Online]. Available: https://gestis-api.dguv.de/api/print/de/008350?excluded_chapters=&id=45dde8bbd9a7c23f306d3d623d08ad550e73a21fb13bb8318f008effdff6aaff (accessed: Apr. 26 2023). Thy, 2009, On representative sampling and reliable chemical characterization in thermal biomass conversion studies, Biomass Bioenergy, 33, 1513, 10.1016/j.biombioe.2009.07.015 Díaz-Ramírez, 2014, Partitioning of K, Cl, S and P during combustion of poplar and brassica energy crops, Fuel, 134, 209, 10.1016/j.fuel.2014.05.056 Guoliang Wang, “Potassium Capture by Kaolin and Coal Fly Ash,” 2018. Lidman Olsson, 2023, Release of phosphorus from thermal conversion of phosphorus-rich biomass chars – Evidence for carbothermic reduction of phosphates, Fuel, 341, 10.1016/j.fuel.2023.127706