Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dự đoán nhiệt độ cho xe điện sử dụng động cơ đồng bộ nam châm vĩnh cửu bằng các công cụ học máy mạnh mẽ
Journal of Ambient Intelligence and Humanized Computing - Trang 1-18 - 2022
Tóm tắt
Xe điện (EV) hiện đang nhận được sự quan tâm lớn không chỉ từ các nhà nghiên cứu hoặc nhà sản xuất mà còn từ chính phủ và người dân. Do đó, nghiên cứu và phát triển loại phương tiện này rất quan trọng và thậm chí đạt đến mức cần thiết. Hiệu suất nhiệt của loại phương tiện này rất quan trọng và cần được nghiên cứu vì nó có tác động lớn đến hiệu quả hoạt động của toàn bộ phương tiện. Vì vậy, công trình này tập trung vào việc khai thác nhiệt từ phần quan trọng nhất của những chiếc xe này, đó là động cơ điện. Hiện nay, động cơ được lắp đặt phổ biến nhất cho các xe điện là động cơ đồng bộ nam châm vĩnh cửu (PMSM). Đôi khi, rất khó để lắp đặt đủ cảm biến để đo nhiệt độ của động cơ một cách chính xác, nhưng thông qua việc đo dòng điện và tham khảo các thông số của động cơ, chúng ta có thể dự đoán nhiệt độ cho động cơ này. Đối với một số lượng lớn thí nghiệm, tất cả các phép đo khả thi đã được thực hiện, và kết quả được lưu lại để sau này trở thành kho dữ liệu cần thiết cho quá trình dự đoán. Nhiều công cụ học máy đã được sử dụng để có được dự đoán nhiệt độ tốt nhất như cây thêm (extra-tree), bao gói K hàng xóm gần nhất (KNN), hồi quy biểu quyết, rừng ngẫu nhiên (random forest) và các thuật toán tăng cường.
Từ khóa
#Xe điện #động cơ đồng bộ nam châm vĩnh cửu #học máy #dự đoán nhiệt độ #hiệu suất nhiệtTài liệu tham khảo
AA, ACBK (2021) Optimal solution for PMSM rotor magnet demagnetization based on temperature estimation for EV application. In: 2021 International Conference on Communication, Control and Information Sciences (ICCISc). IEEE, pp 1–6
Ahmed EM, Rathinam R, Dayalan S et al (2021) A comprehensive analysis of demand response pricing strategies in a smart grid environment using particle swarm optimization and the strawberry optimization algorithm. Mathematics 9:2338. https://doi.org/10.3390/math9182338
Al-Gabalawy M (2021a) Deep analysis of the influence of the different power system structures on the performance of the energy storage systems. Int J Energy Res 45:17805–17833. https://doi.org/10.1002/er.6915
Al-Gabalawy M (2021b) Advanced machine learning tools based on energy management and economic performance analysis of a microgrid connected to the utility grid. Int J Energy Res n/a: https://doi.org/10.1002/er.6764
Al-Gabalawy M, Hosny NS, Dawson JA, Omar AI (2021) State of charge estimation of a Li-ion battery based on extended Kalman filtering and sensor bias. Int J Energy Res 45:6708–6726. https://doi.org/10.1002/er.6265
Ali ZM, Aleem SHEA, Omar AI, Mahmoud BS (2022) Economical-environmental-technical operation of power networks with high penetration of renewable energy systems using multi-objective coronavirus herd immunity algorithm. Mathematics 10:1201. https://doi.org/10.3390/math10071201
Baneira F, Yepes A, Lopez O, Doval-Gandoy J (2015) Estimation method of stator winding temperature for dual three-phase machines based on DC-signal injection. IEEE Trans Power Electron 31:1–1. https://doi.org/10.1109/TPEL.2015.2479410
Chang X, Nie F, Wang S et al (2016) Compound Rank-k projections for bilinear analysis. IEEE Trans Neural Networks Learn Syst 27:1502–1513. https://doi.org/10.1109/TNNLS.2015.2441735
Chapman PL (2016) Permanent magnet synchronous machine drives. In: Ruba MME-AE-SE-M (ed) Electrical machine drives control: an introduction. John Wiley & Sons Ltd, Chichester, pp 296–345
Chaudhari BN, Fernandes BG (2001) Equivalent circuit of single phase permanent magnet synchronous motor. In: 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194). IEEE, pp 1378–1381
Chen K, Yao L, Zhang D et al (2020) A semisupervised recurrent convolutional attention model for human activity recognition. IEEE Trans Neural Networks Learn Syst 31:1747–1756. https://doi.org/10.1109/TNNLS.2019.2927224
Chen Z, Zhao H, Zhang Y et al (2022) State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network. J Power Sources 521:230892. https://doi.org/10.1016/j.jpowsour.2021.230892
Czerwinski D, Gęca J, Kolano K (2021) Machine learning for sensorless temperature estimation of a BLDC motor. Sensors 21:4655. https://doi.org/10.3390/s21144655
Dilshad MR, Ashok S, Vijayan V, Pathiyil P (2016) An energy loss model based temperature estimation for Permanent Magnet Synchronous Motor (PMSM). In: 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). IEEE, pp 172–176
Elmetwaly AH, ElDesouky AA, Omar AI, Attya Saad M (2022) Operation control, energy management, and power quality enhancement for a cluster of isolated microgrids. Ain Shams Eng J 13:101737. https://doi.org/10.1016/j.asej.2022.101737
Feng G, Lai C, Kar NC (2017) Expectation-maximization particle-filter- and kalman-filter-based permanent magnet temperature estimation for PMSM condition monitoring using high-frequency signal injection. IEEE Trans Ind Informatics 13:1261–1270. https://doi.org/10.1109/TII.2016.2591509
Feng G, Lai C, Iyer KLV, Kar NC (2018) Improved high-frequency voltage injection based permanent magnet temperature estimation for PMSM condition monitoring for EV applications. IEEE Trans Veh Technol 67:216–225. https://doi.org/10.1109/TVT.2017.2778429
Feng G, Lai C, Kar NC (2019) Speed harmonic based modeling and estimation of permanent magnet temperature for PMSM drive using Kalman filter. IEEE Trans Ind Informatics 15:1372–1382. https://doi.org/10.1109/TII.2018.2849986
Feng G, Lai C, Li W et al (2020) Efficient permanent magnet temperature modeling and estimation for dual three-phase PMSM considering inverter nonlinearity. IEEE Trans Power Electron 35:7328–7340. https://doi.org/10.1109/TPEL.2019.2956353
Foti S, Testa A, De Caro S et al (2022) A general approach to sensorless estimation rotor and stator windings temperature in induction motor drives. Electr Eng 104:203–215. https://doi.org/10.1007/s00202-021-01373-8
Guo H, Ding Q, Song Y et al (2020) Predicting temperature of permanent magnet synchronous motor based on deep neural network. Energies 13:4782. https://doi.org/10.3390/en13184782
Lafuente D, Cohen B, Fiorini G et al (2021) A Gentle introduction to machine learning for chemists: an undergraduate workshop using python notebooks for visualization, data processing, analysis, and modeling. J Chem Educ 98:2892–2898. https://doi.org/10.1021/acs.jchemed.1c00142
Lee J, Ha JI (2020) Temperature estimation of PMSM using a difference-estimating feedforward neural network. IEEE Access 8:130855–130865. https://doi.org/10.1109/ACCESS.2020.3009503
Li Z, Nie F, Chang X et al (2018a) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Networks Learn Syst 29:6073–6082. https://doi.org/10.1109/TNNLS.2018.2817538
Li Z, Nie F, Chang X et al (2018b) Dynamic affinity graph construction for spectral clustering using multiple features. IEEE Trans Neural Networks Learn Syst 29:6323–6332. https://doi.org/10.1109/TNNLS.2018.2829867
Li Z, Yao L, Chang X et al (2019) Zero-shot event detection via event-adaptive concept relevance mining. Pattern Recognit 88:595–603. https://doi.org/10.1016/j.patcog.2018.12.010
Li Y, Wang Y, Zhang Y, Zhang J (2021) Diagnosis of inter-turn short circuit of permanent magnet synchronous motor based on deep learning and small fault samples. Neurocomputing 442:348–358. https://doi.org/10.1016/j.neucom.2020.04.160
Livera A, Theristis M, Koumpli E et al (2021) Data processing and quality verification for improved photovoltaic performance and reliability analytics. Prog Photovoltaics Res Appl 29:143–158. https://doi.org/10.1002/pip.3349
Luo M, Chang X, Nie L et al (2018) An adaptive semisupervised feature analysis for video semantic recognition. IEEE Trans Cybern 48:648–660. https://doi.org/10.1109/TCYB.2017.2647904
Meng T, Zhang P (2021) A review of thermal monitoring techniques for radial permanent magnet machines. Machines 10:18. https://doi.org/10.3390/machines10010018
Omar AI, Ali ZM, Al-Gabalawy M et al (2020) Multi-objective environmental economic dispatch of an electricity system considering integrated natural gas units and variable renewable energy sources. Mathematics 8:1100. https://doi.org/10.3390/math8071100
Omar AI, Sharaf AM, Shady A, et al (2019) Optimal Switched Compensator for Vehicle-To-Grid Battery Chargers Using Salp Optimization. In: 2019 21st International Middle East Power Systems Conference, MEPCON 2019 - Proceedings. pp 139–144
Rawa M, Abusorrah A, Bassi H et al (2021) Economical-technical-environmental operation of power networks with wind-solar-hydropower generation using analytic hierarchy process and improved grey wolf algorithm. Ain Shams Eng J 12:2717–2734. https://doi.org/10.1016/j.asej.2021.02.004
Tang H, Li W, Li J et al (2020) Calculation and analysis of the electromagnetic field and temperature field of the PMSM based on fault-tolerant control of four-leg inverters. IEEE Trans Energy Convers 35:2141–2151. https://doi.org/10.1109/TEC.2020.2996817
Xu D, Liu J, Zhang S, Wei H (2015) Elimination of low-speed vibration in vector-controlled permanent magnet synchronous motor by real-time adjusted extended kalman filter. Electr Power Components Syst 43:2276–2287. https://doi.org/10.1080/15325008.2015.1081995
Yan C, Chang X, Luo M et al (2021) Self-weighted robust LDA for multiclass classification with edge classes. ACM Trans Intell Syst Technol 12:1–19. https://doi.org/10.1145/3418284
Zhang D, Yao L, Chen K et al (2020) Making sense of spatio-temporal preserving representations for EEG-based human intention recognition. IEEE Trans Cybern 50:3033–3044. https://doi.org/10.1109/TCYB.2019.2905157
Zhou A, Du C, Peng Z et al (2020a) Rotor temperature safety prediction method of PMSM for electric vehicle on real-time energy equivalence. Math Probl Eng 2020:1–10. https://doi.org/10.1155/2020/3213052
Zhou R, Chang X, Shi L et al (2020b) Person reidentification via multi-feature fusion with adaptive graph learning. IEEE Trans Neural Networks Learn Syst 31:1592–1601. https://doi.org/10.1109/TNNLS.2019.2920905