Temperature-induced effect and control of Cu3Sn on the rotation of orientation-preferred Cu6Sn5 crystals at Sn-3.0Ag/(001)Cu interface

Materials Characterization - Tập 171 - Trang 110830 - 2021
H.R. Ma1, C. Dong2, M. Shang2, M.M. Hussain2, Y.P. Wang2, X.G. Li1, H.T. Ma2, J. Chen2
1School of Microelectronics, Dalian University of Technology, Dalian 116024, China
2School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

Tài liệu tham khảo

Tu, 2007 Lee, 2015 Hsiao, 2012, Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper [J], Science., 336, 1007, 10.1126/science.1216511 Shen, 2018, 3D stacked technology of DRAM-logic controller using through-silicon via (TSV) [J], IEEE J. Electron Dev. Soc., 6, 396, 10.1109/JEDS.2018.2815344 Huang, 2014, Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate [J], Sci. Rep., 4, 7117, 10.1038/srep07117 Liu, 2013, Eliminate Kirkendall voids in solder reactions on nanotwinned copper [J], Scr. Mater., 68, 241, 10.1016/j.scriptamat.2012.10.024 Song, 2012, Nanomechanical responses of intermetallic phase at the solder joint interface-crystal orientation and metallurgical effects [J], Mater. Sci. Eng. A, 534, 53, 10.1016/j.msea.2011.11.037 Jiang, 2012, The effect of crystallographic orientation on the mechanical behavior of Cu6Sn5 by micropillar compression testing [J], J. Electron. Mater., 41, 2083, 10.1007/s11664-012-2124-4 Liu, 2013, Epitaxial Cu-Sn bulk crystals grown by electric current [J], Acta Mater., 61, 5713, 10.1016/j.actamat.2013.06.014 Zhang, 2016, Growth characteristics and formation mechanisms of Cu6Sn5 phase at the liquid-Sn0.7Cu/(111) Cu and liquid-Sn0.7Cu/(001) cu joint interfaces [J], Acta Mater., 104, 1, 10.1016/j.actamat.2015.11.034 Xian, 2017, Nucleation of tin on the cu 6 Sn 5 layer in electronic interconnections [J], Acta Mater., 123, 404, 10.1016/j.actamat.2016.10.008 Tu, 2013, Transition from flip chip solder joint to 3D IC microbump: its effect on microstructure anisotropy [J], Microelectron. Reliab., 53, 2, 10.1016/j.microrel.2012.07.029 Kwon, 2011, Stress evolution in surrounding silicon of Cu-filled through-silicon via undergoing thermal annealing by multiwavelength micro-Raman spectroscopy [J], Appl. Phys. Lett., 98, 232106, 10.1063/1.3596443 Zou, 2008, Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals [J], Acta Mater., 56, 2649, 10.1016/j.actamat.2008.01.055 Suh, 2007, Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu [J], Appl. Phys. Lett., 91, 10.1063/1.2761840 Zhang, 2016, Three-dimensional placement rules of Cu6Sn5 textures formed on the (111) Cu and (001) Cu surfaces using electron backscattered diffraction [J], Mater. Des., 94, 280, 10.1016/j.matdes.2016.01.037 Zhong, 2017, Continuous epitaxial growth of extremely strong Cu6Sn5 textures at liquid-Sn/(111)Cu interface under temperature gradient [J], Appl. Phys. Lett., 111, 223502, 10.1063/1.5010266 Qiao, 2020, Dramatic morphological reservation of prism-type Cu6Sn5 formed on single crystal Cu substrates under temperature gradient [J], Mater. Today Commun., 23, 100928, 10.1016/j.mtcomm.2020.100928 Zou, 2010, Application of electron backscatter diffraction to the study on orientation distribution of intermetallic compounds at heterogeneous interfaces (Sn/Ag and Sn/Cu) [J], J. Appl. Phys., 108, 103518, 10.1063/1.3505796 Tian, 2011 Tian, 2014, Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3.0Ag0.5Cu solder joints on different Cu pads [J], Mater. Charact., 88, 58, 10.1016/j.matchar.2013.12.006 Cui, 2009 Ma, 2020, Continuous growth and coarsening mechanism of the orientation-preferred Cu6Sn5 at Sn-3.0Ag/(001)Cu interface [J], Mater. Charact., 166, 110449, 10.1016/j.matchar.2020.110449 Wang, 2014, The orientation relationships of the Cu3Sn/Cu interfaces and a discussion of the formation sequence of Cu3Sn and Cu6Sn5 [J], Thin Solid Films, 562, 398, 10.1016/j.tsf.2014.05.003 Gagliano, 2003, Thickening kinetics of interfacial Cu6Sn5 and Cu3Sn layers during reaction of liquid tin with solid copper [J], J. Electron. Mater., 32, 1441, 10.1007/s11664-003-0113-3 Park, 2010, Early stages of intermetallic compound formation and growth during lead-free soldering [J], Acta Mater., 58, 4900, 10.1016/j.actamat.2010.05.028 Gagliano, 2002, Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate [J], J. Electron. Mater., 31, 1195, 10.1007/s11664-002-0010-1 Pan, 2008, The amorphous origin and the nucleation of intermetallic compounds formed at the interface during the soldering of Sn-3.0Ag-0.5Cu on a Cu substrate [J], Appl. Phys. Lett., 93, 061912, 10.1063/1.2973148 Gong, 2009, Initial formation of CuSn intermetallic compounds between molten SnAgCu solder and Cu substrate [J], Scr. Mater., 60, 333, 10.1016/j.scriptamat.2008.10.029 Gong, 2008, Evolution of CuSn intermetallics between molten SnAgCu solder and Cu substrate [J], Acta Mater., 56, 4291, 10.1016/j.actamat.2008.04.063 Salleh, 2015, Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces [J], Scr. Mater., 100, 17, 10.1016/j.scriptamat.2014.11.039 Lin, 2012, The interphases formed during the very early stage liquid solder/metal substrate interaction of the soldering process [J], JOM, 64, 1184, 10.1007/s11837-012-0441-y Chung, 2010, Direct evidence for a Cu-enriched region at the boundary between Cu6Sn5 and Cu3Sn during Cu/Sn reaction [J], Scr. Mater., 63, 258, 10.1016/j.scriptamat.2010.04.011 Gusak, 2015, Criteria of kinetic suppression of lateral growth of intermediate phases [J], Philos. Mag. Lett., 95, 110, 10.1080/09500839.2015.1020350 Hodaj, 2014, Cu3Sn suppression criterion for solid copper/molten tin reaction [J], Philos. Mag. Lett., 94, 217, 10.1080/09500839.2014.886782 Liashenko, 2016, On the initial stages of phase formation at the solid Cu/liquid Sn-based solder interface [J], Acta Mater., 117, 216, 10.1016/j.actamat.2016.07.021 Dinsdale, 1991, SGTE data for pure elements [J], Calphad., 15, 317, 10.1016/0364-5916(91)90030-N Shim, 1996, Thermodynamic assessment of the Cu-Sn system [J], Z. Met., 87, 205 Shang, 2009, Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates [J], Acta Mater., 57, 4697, 10.1016/j.actamat.2009.06.025 Gao, 2012, Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations [J], Mater. Lett., 73, 92, 10.1016/j.matlet.2012.01.014 Ross, 2019, The role of ultrafine crystalline behavior and trace impurities in copper on intermetallic void formation [J], ACS Appl. Electron. Mater., 1, 88, 10.1021/acsaelm.8b00029 Chen, 2019, The Zn accumulation behavior, phase evolution and void formation in Sn-xZn/Cu systems by considering trace Zn: a combined experimental and theoretical study [J], J. Mater. Res. Technol., 8, 4141, 10.1016/j.jmrt.2019.07.023