Temperature-induced effect and control of Cu3Sn on the rotation of orientation-preferred Cu6Sn5 crystals at Sn-3.0Ag/(001)Cu interface
Tài liệu tham khảo
Tu, 2007
Lee, 2015
Hsiao, 2012, Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper [J], Science., 336, 1007, 10.1126/science.1216511
Shen, 2018, 3D stacked technology of DRAM-logic controller using through-silicon via (TSV) [J], IEEE J. Electron Dev. Soc., 6, 396, 10.1109/JEDS.2018.2815344
Huang, 2014, Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate [J], Sci. Rep., 4, 7117, 10.1038/srep07117
Liu, 2013, Eliminate Kirkendall voids in solder reactions on nanotwinned copper [J], Scr. Mater., 68, 241, 10.1016/j.scriptamat.2012.10.024
Song, 2012, Nanomechanical responses of intermetallic phase at the solder joint interface-crystal orientation and metallurgical effects [J], Mater. Sci. Eng. A, 534, 53, 10.1016/j.msea.2011.11.037
Jiang, 2012, The effect of crystallographic orientation on the mechanical behavior of Cu6Sn5 by micropillar compression testing [J], J. Electron. Mater., 41, 2083, 10.1007/s11664-012-2124-4
Liu, 2013, Epitaxial Cu-Sn bulk crystals grown by electric current [J], Acta Mater., 61, 5713, 10.1016/j.actamat.2013.06.014
Zhang, 2016, Growth characteristics and formation mechanisms of Cu6Sn5 phase at the liquid-Sn0.7Cu/(111) Cu and liquid-Sn0.7Cu/(001) cu joint interfaces [J], Acta Mater., 104, 1, 10.1016/j.actamat.2015.11.034
Xian, 2017, Nucleation of tin on the cu 6 Sn 5 layer in electronic interconnections [J], Acta Mater., 123, 404, 10.1016/j.actamat.2016.10.008
Tu, 2013, Transition from flip chip solder joint to 3D IC microbump: its effect on microstructure anisotropy [J], Microelectron. Reliab., 53, 2, 10.1016/j.microrel.2012.07.029
Kwon, 2011, Stress evolution in surrounding silicon of Cu-filled through-silicon via undergoing thermal annealing by multiwavelength micro-Raman spectroscopy [J], Appl. Phys. Lett., 98, 232106, 10.1063/1.3596443
Zou, 2008, Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals [J], Acta Mater., 56, 2649, 10.1016/j.actamat.2008.01.055
Suh, 2007, Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu [J], Appl. Phys. Lett., 91, 10.1063/1.2761840
Zhang, 2016, Three-dimensional placement rules of Cu6Sn5 textures formed on the (111) Cu and (001) Cu surfaces using electron backscattered diffraction [J], Mater. Des., 94, 280, 10.1016/j.matdes.2016.01.037
Zhong, 2017, Continuous epitaxial growth of extremely strong Cu6Sn5 textures at liquid-Sn/(111)Cu interface under temperature gradient [J], Appl. Phys. Lett., 111, 223502, 10.1063/1.5010266
Qiao, 2020, Dramatic morphological reservation of prism-type Cu6Sn5 formed on single crystal Cu substrates under temperature gradient [J], Mater. Today Commun., 23, 100928, 10.1016/j.mtcomm.2020.100928
Zou, 2010, Application of electron backscatter diffraction to the study on orientation distribution of intermetallic compounds at heterogeneous interfaces (Sn/Ag and Sn/Cu) [J], J. Appl. Phys., 108, 103518, 10.1063/1.3505796
Tian, 2011
Tian, 2014, Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3.0Ag0.5Cu solder joints on different Cu pads [J], Mater. Charact., 88, 58, 10.1016/j.matchar.2013.12.006
Cui, 2009
Ma, 2020, Continuous growth and coarsening mechanism of the orientation-preferred Cu6Sn5 at Sn-3.0Ag/(001)Cu interface [J], Mater. Charact., 166, 110449, 10.1016/j.matchar.2020.110449
Wang, 2014, The orientation relationships of the Cu3Sn/Cu interfaces and a discussion of the formation sequence of Cu3Sn and Cu6Sn5 [J], Thin Solid Films, 562, 398, 10.1016/j.tsf.2014.05.003
Gagliano, 2003, Thickening kinetics of interfacial Cu6Sn5 and Cu3Sn layers during reaction of liquid tin with solid copper [J], J. Electron. Mater., 32, 1441, 10.1007/s11664-003-0113-3
Park, 2010, Early stages of intermetallic compound formation and growth during lead-free soldering [J], Acta Mater., 58, 4900, 10.1016/j.actamat.2010.05.028
Gagliano, 2002, Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate [J], J. Electron. Mater., 31, 1195, 10.1007/s11664-002-0010-1
Pan, 2008, The amorphous origin and the nucleation of intermetallic compounds formed at the interface during the soldering of Sn-3.0Ag-0.5Cu on a Cu substrate [J], Appl. Phys. Lett., 93, 061912, 10.1063/1.2973148
Gong, 2009, Initial formation of CuSn intermetallic compounds between molten SnAgCu solder and Cu substrate [J], Scr. Mater., 60, 333, 10.1016/j.scriptamat.2008.10.029
Gong, 2008, Evolution of CuSn intermetallics between molten SnAgCu solder and Cu substrate [J], Acta Mater., 56, 4291, 10.1016/j.actamat.2008.04.063
Salleh, 2015, Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces [J], Scr. Mater., 100, 17, 10.1016/j.scriptamat.2014.11.039
Lin, 2012, The interphases formed during the very early stage liquid solder/metal substrate interaction of the soldering process [J], JOM, 64, 1184, 10.1007/s11837-012-0441-y
Chung, 2010, Direct evidence for a Cu-enriched region at the boundary between Cu6Sn5 and Cu3Sn during Cu/Sn reaction [J], Scr. Mater., 63, 258, 10.1016/j.scriptamat.2010.04.011
Gusak, 2015, Criteria of kinetic suppression of lateral growth of intermediate phases [J], Philos. Mag. Lett., 95, 110, 10.1080/09500839.2015.1020350
Hodaj, 2014, Cu3Sn suppression criterion for solid copper/molten tin reaction [J], Philos. Mag. Lett., 94, 217, 10.1080/09500839.2014.886782
Liashenko, 2016, On the initial stages of phase formation at the solid Cu/liquid Sn-based solder interface [J], Acta Mater., 117, 216, 10.1016/j.actamat.2016.07.021
Dinsdale, 1991, SGTE data for pure elements [J], Calphad., 15, 317, 10.1016/0364-5916(91)90030-N
Shim, 1996, Thermodynamic assessment of the Cu-Sn system [J], Z. Met., 87, 205
Shang, 2009, Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates [J], Acta Mater., 57, 4697, 10.1016/j.actamat.2009.06.025
Gao, 2012, Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations [J], Mater. Lett., 73, 92, 10.1016/j.matlet.2012.01.014
Ross, 2019, The role of ultrafine crystalline behavior and trace impurities in copper on intermetallic void formation [J], ACS Appl. Electron. Mater., 1, 88, 10.1021/acsaelm.8b00029
Chen, 2019, The Zn accumulation behavior, phase evolution and void formation in Sn-xZn/Cu systems by considering trace Zn: a combined experimental and theoretical study [J], J. Mater. Res. Technol., 8, 4141, 10.1016/j.jmrt.2019.07.023