Temperature dependence of solar cell performance—an analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sze, 1981
G. Landis, R. Rafaelle, D. Merritt, High temperature solar cell development, 19th European Photovoltaic Science and Engineering Conference, Paris, France, June 7–11, 2004.
Wysocki, 1960, Effect of temperature on photovoltaic solar energy conversion, Journal of Applied Physics, 31, 571, 10.1063/1.1735630
Fan, 1986, Theoretical temperature dependence of solar cell parameters, Solar Cells, 17, 309, 10.1016/0379-6787(86)90020-7
Singh, 2008, Temperature dependence of I–V characteristics and performance parameters of silicon solar cell, Solar Energy Materials and Solar Cells, 92, 1611, 10.1016/j.solmat.2008.07.010
D.J. Friedman, Modeling of tandem cell temperature coefficients. in: 25th IEEE Photovoltaic Specialists Conference, Washington DC, IEEE, New York, 1996, pp. 89–92.
M.A. Contreras, T. Nakada, A.O. Pudov, R. Sites, ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo solar cell with 18.6% efficiency, in: Proceedings of the Third World Conference of Photovoltaic Energy Conversion, 2003, pp. 570–573.
Jeng, 2009, Temperature dependences of lnxGa1−xN multiple quantum well solar cells, Journal of Physics D: Applied Physics, 42, 105101, 10.1088/0022-3727/42/10/105101
Henry, 1980, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, Journal of Applied Physics, 51, 4494, 10.1063/1.328272
Shockley, 1961, Detailed balance limit of efficiency of p–n junction solar cells, Journal of Applied Physics, 32, 510, 10.1063/1.1736034
Vos, 1982, On the formula for the upper limit of photovoltaic solar energy conversion efficiency, Journal of Physics D: Applied Physics, 15, 2003, 10.1088/0022-3727/15/10/019
Luque, 2003
Posthuma, 2007, Emitter formation and contact realization by diffusion for germanium photovoltaic devices, IEEE Transactions on Electronic Devices, 54, 1210, 10.1109/TED.2007.894610
Riordan, R. Hulstron, What is an air mass 1.5 spectrum?, in: Proceedings of the Conference Record 21st IEEE Photovoltaic Specialists Conference 2, 1990, pp. 1085–1088.
American Society for Testing and Materials (ASTM). Reference solar spectral irradiance: Air mass 1.5. Available: 〈http://rredc.nrel.gov/solar/spectra/am1.5/〉.
Thekaekara, 1974, Extraterrestrial solar spectrum, 3000–6100 A at 1-A intervals, Applied Optics, 13, 518, 10.1364/AO.13.000518
Varshni, 1967, Temperature dependence of the energy gap in semiconductors, Physica, 34, 149, 10.1016/0031-8914(67)90062-6
Ravindra, 1979, Temperature dependence of the energy gap in semiconductors, Journal of Physics and Chemistry of Solids, 40, 791, 10.1016/0022-3697(79)90162-8
Pässler, 1999, Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors, Physica Status Solidi (b), 216, 975, 10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N
Hu, 1983
Nell, 1987, The spectral p–n junction model for tandem solar-cell design, IEEE Transactions on Electron Devices, 24, 257, 10.1109/T-ED.1987.22916
Green, 1982
Loferski, 1956, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion, Journal of Applied Physics, 27, 777, 10.1063/1.1722483
J.C.C. Fan, B.Y. Tsaur, B.J. Palm, Optimal design of high efficiency tandem cells, in Conference Record 16th IEEE Photovoltaic Specialists Conference, 1982, pp. 692–701.
Rockett, 2008
2005
Editorial, 2008, Reporting solar cell efficiencies in solar energy materials and solar cells, Solar Energy Materials and Solar Cells, 92, 371, 10.1016/j.solmat.2008.01.003
Green, 2011, Solar cell efficiency tables (version 37), Progress in Photovoltaics: Research and Applications, 19, 84, 10.1002/pip.1088
G. Landis, Review of Solar Cell Temperature Coefficients for Space, Proceedings of the XIII Space Photovoltaic Research and Technology Conference, NASA CP-3278, NASA Lewis Research Center, June 1994, pp. 385–400.
First Solar, First solar sets world record for CdTe solar PV efficiency, 2011, 〈http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=593994〉.