Temperature dependence of electromechanical properties of PLZT x/57/43 ceramics

Bulletin of Materials Science - Tập 33 - Trang 383-390 - 2010
A. K. Shukla1, V. K. Agrawal1, I. M. L. Das1, Janardan Singh2, S. L. Srivastava1
1Department of Physics, University of Allahabad, Allahabad, India
2National Physical Laboratory, New Delhi, India

Tóm tắt

The compositions of lead lanthanum zirconate titanate PLZT [Pb(Zr0.57Ti0.43)O3 + x at% of La, where x = 3, 5, 6, 10 and 12] have been synthesized using mixed oxide route. The temperature dependent electromechanical parameters have been determined using vector impedance spectroscopy (VIS). The charge constant d 31 and elastic compliance s 11 show a peak in all the samples at a temperature T mt much below the ferroelectric — paraelectric transition temperature, whereas the series resonance frequency f s shows a dip at these temperatures. The Poisson’s ratio σ E increases with temperature T showing a broad peak at a temperature higher than T mt . The voltage constant g 31 decreases and the planar coupling coefficient K p remains constant up to half of the T mt and then falls sharply with T. Half of the T mt can, therefore, be used for specifying the working temperature limit of the piezoceramics for the device applications.

Tài liệu tham khảo

Bobnar V, Kutnjak Z and Levstik A 1999 J. Eur. Ceram. Soc. 19 1281 Cheon C and Park J S 1997 J. Mater. Sci. Lett. 16 2043 Chen Y T, Lin S C and Cheng S Y 2008 J. Alloys Compd 449 101 Cordero F, Cracium F and Galassi C 2007 Phys. Rev. Lett. 98 255701 Cross L E 1994 Ferroelectrics 151 305 Dong X and Kojima S 1997 Jpn J. Appl. Phys. 36 2989 Haertling G H 1999 J. Am. Ceram. Soc. 82 797 Heywang W and Thomann H 1984 Ann. Rev. Mater. Sci. 14 27 IEEE Standards on Piezoelectricity 1987 (ANSI/IEEE Std, 176) Jaffe B, Cook W R and Jaffe H 1971 Piezoelectric ceramics (London: Academic Press) Kamba S, Bovtun V, Petzelt J, Rychetsky I, Mizaras R, Brilingas A, Banys J, Grigas J and Cosec M 2000 J. Phys.: Condens. Matter 12 497 Katiyar V K, Srivastava S L and Singh J 1994 J. Appl. Phys. 76 455 Katiyar V K, Srivastava S L and Singh J 1997 Ferroelectrics 193 21 Kim J N, Haun M J, Jang S J, Cross L E and Xue X R 1989 IEEE Trans. UFFC 36 389 Mason W P 1964 Physical acoustics — Principles and methods (New York: Academic Press) Meitzler A H and O’Bryan Jr H M 1973 Proc. IEEE 61 959 Ochiai T, Yokosuka M, Mitsuhashi H, Koyama S and Sasaki Y 1998 Jpn J. Appl. Phys. 37 6077 Pandey D, Singh A K and Baik S 2008 Acta Crystallogr. A64 192 Paik D S, Park S E, Shrout T R and Hackenberger W 1999 J. Mater. Sci. 34 469 Singh A K, Mishra S K, Ragini, Pandey D, Yoon S, Baik S and Shin N 2008 Appl. Phys. Lett. 92 022910 Shukla A K, Agrawal V K, Soni N C, Singh D P, Singh J and Srivastava S L 2004 Ferroelectrics 308 67 Shukla A K, Agrawal V K, Das I M L, Singh J, Singh D P and Sood K N 2006 Phase Trans. 79 875 Tang B, Fan H, Ke S and Liu L 2007 Mater. Sci. & Eng. B138 205 Thomann H 1972 Ferroelectrics 4 141 Turner R C, Fuierer P A, Newnham R E and Shrout T R 1994 Appl. Acoust. 41 299 Uchino K 2008 J. Electroceram. 20 301 Uchida N and Ikeda T 1967 Jpn J. Appl. Phys. 6 1292 Volkov A A, Ritus A I and Khvalkovskii A V 2003 Ferroelectrics 285 219 Zhang S, Dong X and Kojima S 1997 Jpn J. Appl. Phys. 36 2994