Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon

International Journal of Heat and Fluid Flow - Tập 28 Số 6 - Trang 1492-1506 - 2007
Cong Tam Nguyen1, David Franck2, G. Roy1, Nicolas Galanis3, Thierry Maré4, S. Boucher1, Honorine Angue Mintsa1
1Faculty of Engineering, Université de Moncton, Moncton, New Brunswick, Canada E1A 3E9
2Institut Supérieur de Technologie Midi-Pyrénées, 31300 Toulouse, France
3Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
4LGCGM, INSA de Rennes/IUT Saint-Malo, Saint-Malo, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Batchelor, 1977, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83, 97, 10.1017/S0022112077001062

Ben Mansour, R., Galanis, N., Nguyen, C.T., 2006. Developing laminar mixed convection of nanofluids in a horizontal tube with uniform wall heat flux. In: Proceedings of the 13th IHTC, 13–18 August 2006, Sydney, Australia.

Ben Mansour, 2007, Effect of uncertainties in physical properties on forced heat transfer with nanofluids, Appl. Therm. Eng., 27, 240, 10.1016/j.applthermaleng.2006.04.011

Brinkman, 1952, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571, 10.1063/1.1700493

Chein, 2005, Analysis of microchannel heat sink performance using nanofluids, Appl. Therm. Eng., 25, 3104, 10.1016/j.applthermaleng.2005.03.008

Choi, S.U.S., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME Publications FED-Vol. 231/MD-Vol. 66, pp. 99–105.

Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 153107-1, 10.1063/1.2093936

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080

Daungthongsuk, 2007, A critical review of convective heat transfer of nanofluids, Renew. Sust. Energ. Rev., 11, 797, 10.1016/j.rser.2005.06.005

Eastman, 1999, Novel thermal properties of nanostructured materials, J. Metastable Nanocryst. Mater., 2, 629, 10.4028/www.scientific.net/JMNM.2-6.629

Eastman, 2001, Anormalously increase effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218

Eastman, 2004, Thermal transport in nanofluids, Annu. Rev. Mater. Res., 34, 219, 10.1146/annurev.matsci.34.052803.090621

Einstein, 1906, Eine neue Bestimmung der Moleküldimensionen, Annalen der Physik, 19, 289, 10.1002/andp.19063240204

Frankel, 1967, On the viscosity of a concentrate suspension of solid spheres, Chem. Eng. Sci., 22, 847, 10.1016/0009-2509(67)80149-0

Graham, 1981, On the viscosity of suspensions of solid spheres, Appl. Sci. Res., 37, 275, 10.1007/BF00951252

Hagen, 1999

Keblinski, P., Eastman, J.A., Cahill, D.G., 2005. Nanofluids for thermal transport, Materials today, June 2005 Issue, pp. 36–44.

Koo, 2005, A new thermal conductivity model for nanofluids, J. Nanoparticle Res., 6, 577, 10.1007/s11051-004-3170-5

Lee, S., Choi, S.U.S., 1996. Application of metallic nanoparticle suspensions in advanced cooling systems, ASME Publications PVP-Vol. 342/MD-Vol. 72, pp. 227–234.

Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978

Li, Q., Xuan, Y., 2002. Convective heat transfer performances of fluids with nano-particles. In: Proceedings of the 12th International Heat Transfer Conference, Grenoble, France, pp. 483–488.

Liu, 2006, Enhancement of thermal conductivity with CuO for nanofluids, Chem. Eng. Technol., 29, 72, 10.1002/ceat.200500184

Lundgren, 1972, Slow flow through stationary random beds and suspensions of spheres, J. Fluid Mech., 51, 273, 10.1017/S002211207200120X

Maı¨ga, 2005, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, 26, 530, 10.1016/j.ijheatfluidflow.2005.02.004

Maı¨ga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Maré, T., Coqueux, M., 2006. Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. In: Lewis, R.W., (Eds.), Int. J. Num. Meth. Heat Fluid Flow, vol. 16(3), pp. 275–292.

Maré, T., Schmitt, A.-G., Nguyen, C.T., Miriel, J., Roy, G., 2006. Experimental heat transfer and viscosity study of nanofluids: water–γAl2O3. In: Proceedings of the 2nd International Conference on Thermal Engineering Theory and Applications, Paper No. 93, January 3–6, 2006, Al Ain, United Arab Emirates.

Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei, 4, 227, 10.2963/jjtp.7.227

Murshed, 2005, Enhanced thermal conductivity of TiO2–water based nanofluids, Int. J. Thermal Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005

Nanophase Technologies, <www.nanophase.com>.

Nguyen, C.T., Roy, G., Suiro, S., Maré, T., Galanis, N., 2006a. Experimental investigation of heat transfer enhancement by using a nanofluid for electronic cooling system. In: Proceedings of the 13th IHTC, 13–18 August 2006, Sydney, Australia.

Nguyen, C.T., Galanis, N., Roy, G., Divoux, S., Gilbert, D., 2006b. Pool boiling characteristics of water–Al2O3 nanofluid. In: Proceedings of the 13th IHTC, 13–18 August 2006, Sydney, Australia.

Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559

Palm, S.J., Roy, G., Nguyen, C.T., 2004. Heat transfer enhancement in a radial flow cooling system using nanofluids. In: Proceedings of the CHT-04 ICHMT International Symposium Advances Computational Heat Transfer, April 19–24 Norway, Paper No. CHT-04-121, 18p.

Polidori, G., Fohanno, S., Nguyen, C.T., in press. A note on heat transfer modeling of Newtonian nanofluids. Int. J. Therm. Sci.

Putra, 2003, Natural convection of nanofluids, Heat Mass Transfer, 39, 775, 10.1007/s00231-002-0382-z

Roy, 2006, Electronic component cooling enhancement using nanofluid in a radial flow cooling system, J. Enhanced Heat Transfer, 13, 101, 10.1615/JEnhHeatTransf.v13.i2.20

Roy, G., Nguyen, C.T., Doucet, D., Suiro, S., Maré, T., 2006b. Temperature dependent thermal conductivity evaluation of Alumina based nanofluids. In: Proceedings of the 13th IHTC, 13–18 August 2006, Sydney, Australia.

Wang, 1999, Thermal conductivity of nanoparticles–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486

Xie, 2005, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle–fluid mixture, Int. J. Heat Mass Transfer, 48, 2926, 10.1016/j.ijheatmasstransfer.2004.10.040

Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3

Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5

Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420