Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames

Springer Science and Business Media LLC - Tập 31 Số 1 - Trang 189-197 - 2022
Tao Cai1, Dan Zhao1
1Department of Mechanical Engineering, College of Engineering, University of Canterbury, Christchurch 8041, New Zealand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang Z., Jiaqiang E., Deng Y., Pham M., Zuo W., Peng Q., Yin Z., Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine. Energy Conversion and Management, 2018, 159: 244–253.

Tan D., Chen Z., Li J., Luo J., Yang D., Cui S., Zhang Z., Effects of swirl and boiling heat transfer on the performance enhancement and emission reduction for a medium diesel engine fueled with biodiesel. Processes, 2021, 9(3): 568.

Zhang Z., Ye J., Tan D., Feng Z., Luo J., Tan Y., Huang Y., The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel, 2021, 290: 120039.

Service R., Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon. Science, 2018, aau7489.

Cai T., Zhao D., Sun Y., Ni S., Li W., Guan D., Wang B., Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate. Renewable and Sustainable Energy Reviews, 2021, 145: 111150.

MacFarlane D.R., Cherepanov P.V., Choi J., Suryanto B.H., Hodgetts R.Y., Bakker J.M., Vallana F.M.F., Simonov A.N., A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205.

Valera-Medina A., Xiao H., Owen-Jones M., David W.I., Bowen P., Ammonia for power. Progress in Energy and Combustion Science, 2018, 69: 63–102.

Kobayashi H., Hayakawa A., Somarathne K.K.A., Okafor E.C., Science and technology of ammonia combustion. Proceedings of the Combustion Institute, 2019, 37(1): 109–133.

Cai T., Becker S.M., Cao F., Wang B., Tang A., Fu J., Han L., Sun Y., Zhao D., NOx emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system. Chemical Engineering Journal, 2021, 417: 128033.

Shrestha K.P., Lhuillier C., Barbosa A.A., Brequigny P., Contino F., Mounaïm-Rousselle C., Seidel L., Mauss F., An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proceedings of the Combustion Institute, 2021, 38(2): 2163–2174.

Goldmann A., Dinkelacker F., Approximation of laminar flame characteristics on premixed ammonia/hydrogen/nitrogen/air mixtures at elevated temperatures and pressures. Fuel, 2018, 224: 366–378.

Mei B., Zhang X., Ma S., Cui M., Guo H., Cao Z., Li Y., Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame, 2019, 210: 236–246.

Li J., Huang H., Kobayashi N., He Z., Osaka Y., Zeng T., Numerical study on effect of oxygen content in combustion air on ammonia combustion. Energy, 2015, 93: 2053–2068.

Han X., Wang Z., He Y., Liu Y., Zhu Y., Konnov A.A., The temperature dependence of the laminar burning velocity and superadiabatic flame temperature phenomenon for NH3/air flames. Combustion and Flame, 2020, 217: 314–320.

Duynslaegher C., Jeanmart H., Vandooren J., Ammonia combustion at elevated pressure and temperature conditions. Fuel, 2010, 89: 3540–3545.

Ciccarelli G., Jackson D., Verreault J., Flammability limits of NH3-H2-N2-air mixtures at elevated initial temperatures. Combustion and Flame, 2006; 144: 53–63.

Kondo S., Takizawa K., Takahashi A., Tokuhashi K., On the temperature dependence of flammability limits of gases. Journal of Hazardous Materials, 2011, 187(1–3): 585–590.

Shioyoke A., Hayashi J., Murai R., Nakatsuka N., Akamatsu F., Numerical investigation on effects of nonequilibrium plasma on laminar burning velocity of ammonia flame. Energy & Fuels, 2018, 32(3): 3824–3832.

Zhang Z., Jiaqiang E., Chen J., Zhu H., Zhao X., Han D., Zuo W., Peng Q., Gong J., Yin Z., Effects of low-level water addition on spray, combustion and emission characteristics of a medium speed diesel engine fueled with biodiesel fuel. Fuel, 2019, 239: 245–262.

Zhang Z., Jiaqiang E., Chen J., Zhao X., Zhang B., Deng Y., Peng Q., Yin Z., Effects of boiling heat transfer on the performance enhancement of a medium speed diesel engine fueled with diesel and rapeseed methyl ester. Applied Thermal Engineering, 2020, 169: 114984.

Cai T., Zhao D., Effects of fuel composition and wall thermal conductivity on thermal and NOx emission performances of an ammonia/hydrogen-oxygen micro-power system. Fuel Processing Technology, 2020, 209: 106527.

Shrestha K.P., Lhuillier C., Barbosa A.A., Brequigny P., Contino F., Mounaïm-Rousselle C., Seidel L., Mauss F., An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proceedings of the Combustion Institute, 2021, 38(2): 2163–2174.

Han X., Wang Z., Costa M., Sun Z., He Y., Cen K., Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combustion and Flame, 2019, 206: 214–226.

Li J., Huang H., Kobayashi N., Wang C., Yuan H., Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition. Energy, 2017, 126: 796–809.

Xiao H., Valera-Medina A., Bowen P.J., Study on premixed combustion characteristics of co-firing ammonia/methane fuels. Energy, 2017, 140: 125–135.

Wang Z., Han X., He Y., Zhu R., Zhu Y., Zhou Z., Cen K., Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combustion and Flame, 2021, 229: 111392.

Issayev G., Giri B.R., Elbaz A.M., Shrestha K.P., Mauss F., Roberts W.L., Farooq A., Combustion behavior of ammonia blended with diethyl ether. Proceedings of the Combustion Institute, 2021, 38(1): 499–506.

“Chemical-Kinetic Mechanisms for Combustion Applications”, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu).

Law C.K., Combustion physics, Cambridge university press, 2010.

Egolfopoulos F., Law C., Chain mechanisms in the overall reaction orders in laminar flame propagation. Combustion and Flame, 1990, 80: 7–16.

Bongers H., De Goey L., The effect of simplified transport modeling on the burning velocity of laminar premixed flames. Combustion Science and Technology, 2003, 175(10): 1915–1928.

Matalon M., Flame dynamics. Proceedings of the Combustion Institute, 2009, 32(1): 57–82.

Wang Y.L., Holley A.T., Ji C., Egolfopoulos F.N., Tsotsis T.T., Curran H.J., Propagation and extinction of premixed dimethyl-ether/air flames. Proceedings of the Combustion Institute, 2009, 32(1): 1035–1042.

Ronney P.D., Effect of chemistry and transport properties on near-limit flames at microgravity. Combustion Science and Technology, 1988, 59(1–3): 123–141.

Hayakawa A., Goto T., Mimoto R., Arakawa Y., Kudo T., Kobayashi H., Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel, 2015, 159: 98–106.

Daly C.A., Simmie J.M., Würmel J., DjebaÏli N., Paillard C., Burning velocities of dimethyl ether and air. Combustion and Flame, 2001, 125: 1329–1340.

Zhao Z., Kazakov A., Dryer F., Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry. Combustion and Flame, 2004, 139: 52–60.

Mohammad A., Juhany K.A., Laminar burning velocity and flame structure of DME/methane+air mixtures at elevated temperatures. Fuel, 2019, 245: 105–114.

Tang A., Cai T., Deng J., Xu Y., Pan J., Experimental investigation on combustion characteristics of premixed propane/air in a micro-planar heat recirculation combustor. Energy Conversion and Management, 2017, 152: 65–71.