Công nghệ nghiên cứu các ngưng tụ phân tử sinh học phân pha

Boyuan Deng1, Gang Wan1
1Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, China

Tóm tắt

Các ngưng tụ phân tử sinh học, còn được gọi là bào quan không có màng, đóng vai trò là đơn vị tổ chức cơ bản trong tế bào. Các cấu trúc này chủ yếu hình thành thông qua quá trình phân pha lỏng-lỏng, trong đó protein và axit nucleic tách biệt khỏi môi trường xung quanh để lắp ráp thành các cấu trúc ở quy mô micromet. Bằng cách tập trung các protein và axit nucleic có chức năng liên quan, các ngưng tụ phân tử sinh học này điều chỉnh vô số quá trình tế bào thiết yếu. Để nghiên cứu những bào quan quan trọng và phức tạp này, một loạt các công nghệ đã được điều chỉnh hoặc phát triển. Trong bài đánh giá này, chúng tôi cung cấp cái nhìn tổng quan về các công nghệ được sử dụng nhiều nhất trong lĩnh vực đang phát triển nhanh chóng này. Những công nghệ này bao gồm các phương pháp được sử dụng để xác định các ngưng tụ mới, khám phá các thành phần của chúng, điều tra các thuộc tính và quy định không gian-thời gian của chúng, và hiểu các nguyên tắc tổ chức điều khiển các ngưng tụ này. Chúng tôi cũng thảo luận về những thách thức tiềm năng và đánh giá những tiến bộ hiện tại trong việc áp dụng các nguyên tắc của các ngưng tụ phân tử sinh học vào việc phát triển các công nghệ mới, chẳng hạn như trong sinh học tổng hợp.

Từ khóa

#ngưng tụ phân tử sinh học #phân pha lỏng-lỏng #bào quan không có màng #công nghệ sinh học #sinh học tổng hợp

Tài liệu tham khảo

Alberti S, et al. A user’s guide for phase separation assays with purified proteins. J Mol Biol. 2018;430:4806–20. Alghoul E, et al. Compartmentalization of the SUMO/RNF4 pathway by SLX4 drives DNA repair. Mol Cell. 2023;83:1640-1658 e1649. Andre AAM, Spruijt E. Liquid-liquid phase separation in crowded environments. Int J Mol Sci. 2020;21:5908. Baggett DW, et al. An image analysis pipeline for quantifying the features of fluorescently-labeled biomolecular condensates in cells. Front Bioinform. 2022;2:897238. Banani SF, et al. Compositional control of phase-separated cellular bodies. Cell. 2016;166:651–63. Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18:285–98. Banani SF, et al. Genetic variation associated with condensate dysregulation in disease. Dev Cell. 2022;57:1776-1788.e1778. Bandaria JN, Qin PW, Berk V, Chu S, Yildiz A. Shelterin protects chromosome ends by compacting telomeric chromatin. Cell. 2016;164:735–46. Boeynaems S, et al. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties. Proc Natl Acad Sci U S A. 2019;116:7889–98. Boija A, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell. 2018;175:1842–55. Boke E, et al. Amyloid-like self-assembly of a cellular compartment. Cell. 2016;166:637–50. Bolognesi B, et al. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep. 2016;16:222–31. Bose M, Lampe M, Mahamid J, Ephrussi A. Liquid-to-solid phase transition of ribonucleoprotein granules is essential for their function in embryonic development. Cell. 2022;185:1308–24. Bouchard JJ, et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active phase-separated compartments. Mol Cell. 2018;72:19–36. Brangwynne CP, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009;324:1729–32. Branon TC, et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol. 2018;36:880–7. Burke KA, Janke AM, Rhine CL, Fawzi NL. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA Polymerase II. Mol Cell. 2015;60:231–41. Cai H, Vernon RM, Forman-Kay JD. An interpretable machine-learning algorithm to predict disordered protein phase separation based on biophysical interactions. Biomolecules. 2022;12:1131. Cho KF, et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat Protoc. 2020;15:3971–99. Chu X, et al. Prediction of liquid-liquid phase separating proteins using machine learning. BMC Bioinformatics. 2022;23:72. Cui Q, et al. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell. 2023;186:803-820 e825. Das S, Lin YH, Vernon RM, Forman-Kay JD, Chan HS. Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. Proc Natl Acad Sci U S A. 2020;117:28795–805. Day KJ, et al. Liquid-like protein interactions catalyse assembly of endocytic vesicles. Nat Cell Biol. 2021;23:366–76. Ditlev JA, Case LB, Rosen MK. Who’s in and who’s out-compositional control of biomolecular condensates. J Mol Biol. 2018;430:4666–84. Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361:704–9. Dumelie JG, et al. Biomolecular condensates create phospholipid-enriched microenvironments. Nat Chem Biol. 2024;20:302–13. Elbaum-Garfinkle S, et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci U S A. 2015;112:7189–94. Feric M, et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell. 2016;165:1686–97. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953. Folkmann AW, Putnam A, Lee CF, Seydoux G. Regulation of biomolecular condensates by interfacial protein clusters. Science. 2021;373:1218–24. Fong KW, et al. Whole-genome screening identifies proteins localized to distinct nuclear bodies. J Cell Biol. 2013;203:149–64. Gao XK, et al. Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes. Cell Discovery. 2022;8:60. Han TNW, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell. 2012;149:768–79. Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci U S A. 2020;117:33254–62. Hatos A, Tosatto SCE, Vendruscolo M, Fuxreiter M. FuzDrop on AlphaFold: visualizing the sequence-dependent propensity of liquid-liquid phase separation and aggregation of proteins. Nucleic Acids Res. 2022;50:W337-w344. Holehouse AS, Das RK, Ahad JN, Richardson MO, Pappu RV. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys J. 2017;112:16–21. Hondele M, et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature. 2019;573:144–8. Hou C, et al. PhaSepDB in 2022: annotating phase separation-related proteins with droplet states, co-phase separation partners and other experimental information. Nucleic Acids Res. 2023;51:D460–5. Hubstenberger A, et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol Cell. 2017;68:144–57. Hughes MP, et al. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science. 2018;359:698–701. Ikeda R, et al. Phosphorylation of phase-separated p62 bodies by ULK1 activates a redox-independent stress response. Embo J. 2023;42: e113349. Jack A, et al. Compartmentalization of telomeres through DNA-scaffolded phase separation. Dev Cell. 2022;57:277–90. Jain S, et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell. 2016;164:487–98. Kang JY, et al. LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science. 2022;377:eabj6647. Kato M, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell. 2012;149:753–67. Kennedy MJ, et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods. 2010;7:973–5. Kim TH, et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science. 2019;365:825–9. Klein IA, et al. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020;368:1386–92. Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci U S A. 2000;97:1589–94. Kryndushkin D, Wickner RB, Shewmaker F. FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein Cell. 2011;2:223–36. Lancaster AK, Nutter-Upham A, Lindquist S, King OD. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics. 2014;30:2501–2. Larson AG, et al. Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature. 2017;547:236–40. Li PL, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483:336-U129. Li J, Cao F, Yin HL, Huang ZJ, Wang G. Ferroptosis: past, present and future. Cell Death Dis. 2020a;11:88. Li Q, et al. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res. 2020b;48:D320–7. Liao YC, et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell. 2019;179:147–64. Lim S, Clark DS. Phase-separated biomolecular condensates for biocatalysis. Trends Biotechnol. 2023;S0167-7799:00294–9. Lin Y, Protter DS, Rosen MK, Parker R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell. 2015;60:208–19. Linsenmeier M, et al. Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains RNA and biochemical activity. Nat Commun. 2022;13:3030. Liu W, et al. From Saccharomyces cerevisiae to human: The important gene co-expression modules. Biomed Rep. 2017;7:153–8. Liu XY, et al. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biol. 2021;22:1. Liu J, et al. CRISPR-assisted transcription activation by phase-separation proteins. Protein Cell. 2023;14:874–87. Liu, J.Q. et al. CRISPR-assisted transcription activation by phase-separation proteins. Protein Cell 2023. Luo Y, Na ZK, Slavoff SA. P-Bodies: composition, properties, and functions. Biochemistry-Us. 2018;57:2424–31. Lyu XY, et al. CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification. Cell Res. 2022;32:1133–1133 vol 32, pg 969, 2022. Ma W, Mayr C. A membraneless organelle associated with the endoplasmic reticulum enables 3’UTR-mediated protein-protein interactions. Cell. 2018;175:1492-1506 e1419. Ma SF, et al. Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice. Nucleic Acids Res. 2023;51:5271–84. Maharana S, et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science. 2018;360:918–21. Majumder S, Jain A. Osmotic stress triggers phase separation. Mol Cell. 2020;79:876–7. Mangiarotti A, Chen N, Zhao Z, Lipowsky R, Dimova R. Wetting and complex remodeling of membranes by biomolecular condensates. Nat Commun. 2023;14:2809. Markmiller S, et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell. 2018;172:590-604.e513. Mathew B, Bathla S, Williams KR, Nairn AC. Deciphering spatial protein-protein interactions in brain using proximity labeling. Mol Cell Proteomics. 2022;21:100422. Mészáros B, Erdos G, Dosztányi Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018;46:W329–37. Mészáros B, et al. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res. 2020;48:D360-d367. Mitrea DM, et al. Methods for physical characterization of phase-separated bodies and membrane-less organelles. J Mol Biol. 2018;430:4773–805. Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov. 2022;21:841–62. Molliex A, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163:123–33. Moon SL, et al. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat Cell Biol. 2019;21:162–8. Moosavi B, Mousavi B, Macreadie IG. Yeast model of amyloid-β and Tau aggregation in Alzheimer’s disease. J Alzheimer’s Dis. 2015;47:9–16. Mugler CF, et al. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. Elife. 2016;5:e18746. Munder MC, et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. Elife. 2016;5:e09347. Niu X, et al. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm. 2023;4:e223. Oates ME, et al. D2P2: database of disordered protein predictions. Nucleic Acids Res. 2013;41:D508-516. Pandey NK, et al. Fluorescent protein tagging promotes phase separation and alters the aggregation pathway of huntingtin exon-1. J Biol Chem. 2023;300:105585. Patel A, et al. A Liquid-to-Solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162:1066–77. Pederson T. The nucleolus. Csh Perspect Biol. 2011;3:e000638. Protter DSW, Parker R. Principles and properties of stress granules. Trends Cell Biol. 2016;26:668–79. Qamar S, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell. 2018;173:720-734.e715. Raimondi D, et al. In silico prediction of in vitro protein liquid-liquid phase separation experiments outcomes with multi-head neural attention. Bioinformatics. 2021;37:3473–9. Riback JA, et al. Stress-triggered phase separation is an adaptive evolutionarily tuned response. Cell. 2017;168:1028. Roux KJ, Kim DI, Raida M, Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol. 2012;196:801–10. Saar KL, et al. Learning the molecular grammar of protein condensates from sequence determinants and embeddings. Proc Natl Acad Sci U S A. 2021;118:e2019053118. Sadek H, et al. Cardiogenic small molecules that enhance myocardial repair by stem cells. P Natl Acad Sci USA. 2008;105:6063–8. Sanders DW, et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell. 2020;181:306-324 e328. Schuster BS, et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc Natl Acad Sci U S A. 2020;117:11421–31. Shan L, et al. Nucleolar URB1 ensures 3’ ETS rRNA removal to prevent exosome surveillance. Nature. 2023;615:526–34. Shi B, et al. Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Res. 2022;32:715–28. Shin Y, et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell. 2017;168:159-171 e114. Shin Y, et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell. 2018;175:1481-1491 e1413. So C, Cheng S, Schuh M. Phase separation during germline development. Trends Cell Biol. 2021;31:254–68. Sun Y, et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat Chem. 2022;14:274–83. Sun H, et al. Recruitment of TRIM33 to cell-context specific PML nuclear bodies regulates nodal signaling in mESCs. Embo J. 2023;42:e112058. Tauber D, et al. Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell. 2020;180:411-426 e416. Tyrrell J, Weeks KM, Pielak GJ. Challenge of mimicking the influences of the cellular environment on RNA structure by PEG-induced macromolecular crowding. Biochemistry. 2015;54:6447–53. van Mierlo G, et al. Predicting protein condensate formation using machine learning. Cell Rep. 2021;34:108705. Vernon RM, et al. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife. 2018;7:31486. Walsh I, Martin AJ, Di Domenico T, Tosatto SC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics. 2012;28:503–9. Wan G, et al. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature. 2018;557:679–83. Wan G, et al. ZSP-1 is a Z granule surface protein required for Z granule fluidity and germline immortality in Caenorhabditis elegans. EMBO J. 2021;40: e105612. Wan L, Zhu Y, Zhang W, Mu W. Phase-separated synthetic organelles based on intrinsically disordered protein domain for metabolic pathway assembly in escherichia coli. ACS Nano. 2023;17:10806–16. Wang J, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell. 2018;174:688-699 e616. Wang H, et al. CRISPR-mediated live imaging of genome editing and transcription. Science. 2019;365:1301–5. Wang B, et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat Chem Biol. 2022;18:1361–9. Wang X, et al. LLPSDB v2.0: an updated database of proteins undergoing liquid-liquid phase separation in vitro. Bioinformatics. 2022;38:2010–4. Wang X, et al. Manganese regulation of COPII condensation controls circulating lipid homeostasis. Nat Cell Biol. 2023;25:1650–63. Watanabe K, et al. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose). Nat Commun. 2021;12:1353. Watson JL, et al. Macromolecular condensation buffers intracellular water potential. Nature. 2023;623:842–52. Woodruff JB, et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell. 2017;169:1066–77. Xing YH, et al. DisP-seq reveals the genome-wide functional organization of DNA-associated disordered proteins. Nat Biotechnol. 2024;42(1):52–64. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta. 2010;1804:996–1010. Yamazaki H, Takagi M, Kosako H, Hirano T, Yoshimura SH. Cell cycle-specific phase separation regulated by protein charge blockiness. Nat Cell Biol. 2022;24:625–32. Yang PG, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181:325–45. You K, et al. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res. 2020;48:D354–9. Yu HY, et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science. 2021;371(6529):eabb4309. Yu X, et al. The STING phase-separator suppresses innate immune signalling. Nat Cell Biol. 2021;23:330–40. Yu C, et al. Proteome-scale analysis of phase-separated proteins in immunofluorescence images. Brief Bioinform. 2021;22:bbaa187. Zeng M, et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell. 2016;166:1163-1175 e1112. Zhang JZ, et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell. 2020;182:1531-1544 e1515. Zhang H, et al. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid-liquid phase separation and restricted by DNA methylation. Nucleus-Phila. 2022;13:1–34. Zhang HH, et al. Large-scale identification of potential phase- separation proteins from plants using a cell-free system. Mol Plant. 2023a;16:310–3. Zhang X, Li H, Ma Y, Zhong D, Hou S. Study liquid-liquid phase separation with optical microscopy: a methodology review. APL Bioengineering. 2023c;7:021502. Zhao EM, et al. Light-based control of metabolic flux through assembly of synthetic organelles. Nat Chem Biol. 2019;15:589–97. Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell. 2021;81:739-755 e737. Zhou XM, et al. Mutations linked to neurological disease enhance self-association of low-complexity protein sequences. Science. 2022;377(6601):eabn5582. Zhu S, et al. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. Dev Cell. 2022;57:583–597.e586. Zhuang YR, et al. Circadian clocks are modulated by compartmentalized oscillating translation. Cell. 2023;186(15):3245–60.e23.