Technological and biochemical features of lignin-degrading enzymes: a brief review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdel-Hamid AM, Solbiati JO, Cann IKO (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol. https://doi.org/10.1016/b978-0-12-407679-2.00001-6
Adav SS et al (2010) Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res 9(6):3016–3024. https://doi.org/10.1021/pr901174z
Ahmad M et al (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50(23):5096–5107. https://doi.org/10.1021/bi101892z
Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria [1]. Trends Biotechnol 18(2):41–42. https://doi.org/10.1016/s0167-7799(99)01406-7
Ali, Sreekrishnan (2001) Paper mill eflluent toxicity.pdf. Adv Environ Res 5(2):175–196. https://doi.org/10.1016/S1093-0191(00)00055-1
Ali M, Husain Q, Isqui HM (2019) Fungal peroxidases mediated bioremediation of industrial pollutants. Fungal bioremediation: fundamentals and applications. CRC, Boca Raton, p 22
Alvira P, Ballesteros M, Negro MJ (2010) Bioresource technology pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
Antonopoulou I et al (2016) Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol 100(15):6519–6543. https://doi.org/10.1007/s00253-016-7647-9
Arakane Y et al (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci USA 102(32):11337–11342. https://doi.org/10.1073/pnas.0504982102
Arias ME et al (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69(4):1953–1958. https://doi.org/10.1128/AEM.69.4.1953-1958.2003
Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod 44:488–495. https://doi.org/10.1016/j.indcrop.2012.10.005
Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30(2):215–242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
Barreca AM et al (2003) Laccase/mediated oxidation of a lignin model for improved delignification procedures. J Mol Catal B Enzym 26(1–2):105–110. https://doi.org/10.1016/j.molcatb.2003.08.001
Basto C, Tzanov T, Cavaco-Paulo A (2007) Combined ultrasound-laccase assisted bleaching of cotton. Ultrason Sonochem 14(3):350–354. https://doi.org/10.1016/j.ultsonch.2006.07.006
Bilal M et al (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—a review. Sci Total Environ 576:646–659. https://doi.org/10.1016/j.scitotenv.2016.10.137
Bilir K et al (2016) Construction of an oxygen detection-based optic laccase biosensor for polyphenolic compound detection. Turk J Biol 40(6):1303–1310. https://doi.org/10.3906/biy-1602-40
Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48(4):849–854. https://doi.org/10.1128/aem.48.4.849-854.1984
Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267(1):99–102. https://doi.org/10.1016/0014-5793(90)80298-w
Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellul Chem Technol 44(9):353–363
Brissos V et al (2017) Engineering a bacterial DyP-type peroxidase for enhanced oxidation of lignin-related phenolics at alkaline pH. ACS Catal 7(5):3454–3465. https://doi.org/10.1021/acscatal.6b03331
Brown ME et al (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc 133(45):18006–18009. https://doi.org/10.1021/ja203972q
Brown ME, Barros T, Chang MCY (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7(12):2074–2081. https://doi.org/10.1021/cb300383y
Bugg TDH et al (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896. https://doi.org/10.1039/c1np00042j
Campos R et al (2001) Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J Biotechnol 89(2–3):131–139. https://doi.org/10.1016/s0168-1656(01)00303-0
Castro-Sowinski S, Martinez-Drets G, Okon Y (2002) Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiol Lett 209(1):119–125. https://doi.org/10.1111/j.1574-6968.2002.tb11119.x
Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17(2):326–342. https://doi.org/10.1039/c4em00627e
Chandra MRGS, Madakka M (2019) Comparative biochemistry and kinetics of microbial lignocellulolytic enzymes, recent developments in applied microbiology and biochemistry. Elsevier, Oxford. https://doi.org/10.1016/b978-0-12-816328-3.00011-8
Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7(5):1–20. https://doi.org/10.1007/s13205-017-0955-7
Chen C et al (2015a) Characterization of dye-decolorizing peroxidase (DyP) from Thermomonospora curvata reveals unique catalytic properties of A-type DyPs. J Biol Chem 290(38):23447–23463. https://doi.org/10.1074/jbc.m115.658807
Chen M et al (2015b) Molecular basis of laccase bound to lignin: insight from comparative studies on the interaction of Trametes versicolor laccase with various lignin model compounds. RSC Adv 5(65):52307–52313. https://doi.org/10.1039/c5ra07916k
Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107(February):232–249. https://doi.org/10.1016/j.rser.2019.03.008
Choinowski T et al (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the C(β) of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286(3):809–827. https://doi.org/10.1006/jmbi.1998.2507
Chowdhary P et al (2018) Ligninolytic enzymes: an introduction and applications in the food industry, enzymes in food biotechnology: production, applications, and future prospects. Elsevier, Oxford. https://doi.org/10.1016/b978-0-12-813280-7.00012-8
Claus H (2004) Laccases: structure, reactions, distribution. Micron 35(1–2):93–96. https://doi.org/10.1016/j.micron.2003.10.029
Colpa DI, Fraaije MW, Van Bloois E (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41(1):1–7. https://doi.org/10.1007/s10295-013-1371-6
Coy MR et al (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40(10):723–732. https://doi.org/10.1016/j.ibmb.2010.07.004
Darwesh OM, Matter IA, Eida MF (2019) Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.11.049
de Gonzalo G et al (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011
de Oliveira PL et al (2009) Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Paenibacillus sp. Braz J Microbiol 40(4):818–826. https://doi.org/10.1590/s1517-83822009000400012
Dean JFD, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plants. Holzforschung 48(s1):21–33. https://doi.org/10.1515/hfsg.1994.48.s1.21
Dogaris I, Mamma D, Kekos D (2013) Biotechnological production of ethanol from renewable resources by Neurospora crassa : an alternative to conventional yeast fermentations ? Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-012-4655-2
Falade AO et al (2017) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6(1):1–14. https://doi.org/10.1002/mbo3.394
Fujii K et al (2020) A comparison of lignin-degrading enzyme activities in forest floor layers across a global climatic gradient. Soil Ecol Lett. https://doi.org/10.1007/s42832-020-0042-6
Galliano H et al (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microbial Technol 13:478–482
Giardina P et al (2010) Laccases: a never-ending story. Cell Mol Life Sci 67(3):369–385. https://doi.org/10.1007/s00018-009-0169-1
Glenn JK et al (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114(3):1077–1083. https://doi.org/10.1016/0006-291X(83)90672-1
Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242(2):329–341. https://doi.org/10.1016/0003-9861(85)90217-6
Hakulinen N, Rouvinen J (2015) Three-dimensional structures of laccases. Cell Mol Life Sci 72(5):857–868. https://doi.org/10.1007/s00018-014-1827-5
Hatakeyama H, Hatakeyama T (2010) Lignin structure, properties, and applications. Biol Res 5(1):28–37
Heinfling A et al (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428(3):141–146. https://doi.org/10.1016/S0014-5793(98)00512-2
Hildén K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotech Lett 31(8):1117–1128. https://doi.org/10.1007/s10529-009-9998-0
Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microbial Technol 30(4):454–466. https://doi.org/10.1016/s0141-0229(01)00528-2
Houtman CJ et al (2018) Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant. J Biol Chem 293(13):4702–4712. https://doi.org/10.1074/jbc.ra117.001153
Janusz G et al (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962. https://doi.org/10.1093/femsre/fux049
Janusz G et al (2020) Laccase properties, physiological functions, and evolution. Int J Mol Sci. https://doi.org/10.3390/ijms21030966
Johansson T, Welinder KG, Nyman PO (1993) Isozymes of lignin peroxidase and Manganese(II) peroxidase from the white-rot Basidiomycete Trametes versicolor. II. Partial Sequences, Peptide Maps, and Amino Acid and Carbohydrate Compositions. Arch Biochem Biophys. https://doi.org/10.1006/abbi.1993.1008
Kim SJUN, Shoda M (1999) Puri cation and characterization of a novel peroxidase. Society 65(3):1029–1035
Kim SJ et al (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng 79(6):601–607. https://doi.org/10.1016/0922-338X(95)94755-G
Kim Y et al (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microbial Technol 48(4–5):408–415. https://doi.org/10.1016/j.enzmictec.2011.01.007
Koschorreck K et al (2008) Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. Arch Biochem Biophys 474(1):213–219. https://doi.org/10.1016/j.abb.2008.03.009
Kosman DJ (2010) Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem 15(1):15–28. https://doi.org/10.1007/s00775-009-0590-9
Koua D et al (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37(SUPPL. 1):261–266. https://doi.org/10.1093/nar/gkn680
Kuhad RC et al (2004) Developments in microbial methods for the treatment of dye effluents. Adv Appl Microbiol 56:185–213. https://doi.org/10.1016/s0065-2164(04)56006-9
Kunamneni A et al (2008) Engineering and applications of fungal laccases for organic synthesis. Microbial Cell Fact 17:1–17. https://doi.org/10.1186/1475-2859-7-32
Kurisawa M et al (2003) Laccase-catalyzed Synthesis and Antioxidant Property of Poly(catechin). Macromol Biosci 3(12):758–764. https://doi.org/10.1002/mabi.200300038
Lai C et al (2018) Bioresource technology enhanced enzymatic digestibility of mixed wood sawdust by lignin modi fi cation with naphthol derivatives during dilute acid pretreatment. Bioresour Technol 269(June):18–24. https://doi.org/10.1016/j.biortech.2018.08.086
Lambertz C et al (2016) Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases. Bioengineered 7(3):145–154. https://doi.org/10.1080/21655979.2016.1191705
Leonowicz A et al (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27(2–3):175–185. https://doi.org/10.1006/fgbi.1999.1150
Liers C et al (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85(6):1869–1879. https://doi.org/10.1007/s00253-009-2173-7
Lobos S et al (1994) Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology 140(10):2691–2698. https://doi.org/10.1099/00221287-140-10-2691
Machczynski MC et al (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13(9):2388–2397. https://doi.org/10.1110/ps.04759104
Margot J et al (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Expr 3:1–14. https://doi.org/10.1186/2191-0855-3-63
Martins LO et al (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277(21):18849–18859. https://doi.org/10.1074/jbc.M200827200
Mensah CA et al (2012) Reduced tannin content of laccase-treated cocoa (Theobroma cacao) pod husk. Int J Biol Chem. https://doi.org/10.3923/ijbc.2012.31.36
Min K et al (2015) A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep 5:1–8. https://doi.org/10.1038/srep08245
Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13(6–7):205–216. https://doi.org/10.1016/s0924-2244(02)00155-3
Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9(6):415–425. https://doi.org/10.1007/s00792-005-0458-z
Moilanen AM et al (1996) Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiata. Appl Microbiol Biotechnol 45(6):792–799. https://doi.org/10.1007/s002530050764
Munk L et al (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 33(1):13–24. https://doi.org/10.1016/j.biotechadv.2014.12.008
Nagasaki K et al (2008) Purification, characterization, and gene cloning of Ceriporiopsis sp. strain MD-1 peroxidases that decolorize human hair melanin. Appl Environ Microbiol 74(16):5106–5112. https://doi.org/10.1128/aem.00253-08
Ng IS et al (2015) Enzymatic exploration of catalase from a nanoparticle producing and biodecolorizing algae Shewanella xiamenensis BC01. Bioresour Technol 184:429–435. https://doi.org/10.1016/j.biortech.2014.09.079
Nowak J, Jarosz-Wilkołazka A, Luterek J (2006) Catalytic activity of versatile peroxidase from Bjerkandera fumosa in aqueous solutions of water-miscible organic solvents. Appl Catal A Gen 308:56–61. https://doi.org/10.1016/j.apcata.2006.04.009
Nunes CS, Kunamneni A (2018) Laccases-properties and applications. In: Sug R (ed) Enzymes in human and animal nutrition: principles and perspectives. Elsevier, Oxford
Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of laccases in the food industry. Enzyme Res. https://doi.org/10.4061/2010/918761
Paice MG et al (1993) Manganese peroxidase, produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Appl Environ Microbiol 59(1):260–265. https://doi.org/10.1128/aem.59.1.260-265.1993
Parmar I, Rupasinghe HPV (2013) Bio-conversion of apple pomace into ethanol and acetic acid: enzymatic hydrolysis and fermentation. Biores Technol 130:613–620. https://doi.org/10.1016/j.biortech.2012.12.084
Pazarlioǧlu NK, Sariişik M, Telefoncu A (2005) Laccase: production by Trametes versicolor and application to denim washing. Process Biochem 40(5):1673–1678. https://doi.org/10.1016/j.procbio.2004.06.052
Pérez-Boada M et al (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354(2):385–402. https://doi.org/10.1016/j.jmb.2005.09.047
Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess. https://doi.org/10.1186/s40643-015-0049-5
Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater—a review. Sci Total Environ 333:37–58. https://doi.org/10.1016/j.scitotenv.2004.05.017
Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282(7):1190–1213. https://doi.org/10.1111/febs.13224
Ponnusamy VK et al (2019) A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 271:462–472. https://doi.org/10.1016/j.biortech.2018.09.070
Rahmanpour R, Bugg TDH (2015) Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: oxidation of Mn(II) and polymeric lignin by Dyp1B. Arch Biochem Biophys 574:93–98. https://doi.org/10.1016/j.abb.2014.12.022
Rahmanpour R, King LDW, Bugg TDH (2016) Identification of an extracellular bacterial flavoenzyme that can prevent re-polymerisation of lignin fragments. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2016.10.144
Ravichandran A, Sridhar M (2017) Insights into the mechanism of lignocellulose degradation by versatile peroxidases. Curr Sci 113(1):35–42. https://doi.org/10.18520/cs/v113/i01/35-42
Reiss R et al (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One. https://doi.org/10.1371/journal.pone.0065633
Rodriguez-Couto S (2012) Laccases for denim bleaching: an eco-friendly alternative. Open Text J 5(1):1–7. https://doi.org/10.2174/1876520301205010001
Rodriguez-Couto SR, Toca-herrera JL (2006) Lacasses in the textile industry. Biotechnol Mol Biol Rev 1(December):115–120. http://www.academicjournals.org/BMBR%5Cnhttp://academicjournals.org/article/article1381411420_CoutoandToca-Herrera.pdf
Rodríguez-Delgado MM et al (2015) Laccase-based biosensors for detection of phenolic compounds. TrAC 74:21–45. https://doi.org/10.1016/j.trac.2015.05.008
Rodríguez-Escribano D et al (2017) High-throughput screening assay for laccase engineering toward lignosulfonate valorization. Int J Mol Sci 18(8):1–10. https://doi.org/10.3390/ijms18081793
Rosconi F et al (2005) Purification and characterization of a periplasmic laccase produced by Sinorhizobium meliloti. Enzyme Microbial Technol 36(5–6):800–807. https://doi.org/10.1016/j.enzmictec.2005.01.003
Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnol 2(2 SPEC. ISS.):164–177. https://doi.org/10.1111/j.1751-7915.2008.00078.x
Saxena A, Chauhan PS (2016) Role of various enzymes for deinking paper : a review. Critical Rev Biotechnol. https://doi.org/10.1080/07388551.2016.1207594
Schneider WDH et al (2019) Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield. Appl Energy 262:114493. https://doi.org/10.1016/j.apenergy.2020.114493
Sekretaryova AN et al (2016) Total phenol analysis of weakly supported water using a laccase-based microband biosensor. Anal Chim Acta 907:45–53. https://doi.org/10.1016/j.aca.2015.12.006
Selinheimo E et al (2006) Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci 43(2):152–159. https://doi.org/10.1016/j.jcs.2005.08.007
Shiba T et al (2000) Oxidation of isoeugenol and coniferyl alcohol catalyzed by laccases isolated from Rhus vernicifera Stokes and Pycnoporus coccineus. J Mol Catal B Enzymat 10(6):605–615. https://doi.org/10.1016/s1381-1177(00)00184-3
Shin SK et al (2019) Effective melanin degradation by a synergistic laccase-peroxidase enzyme complex for skin whitening and other practical applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.02.027
Sigoillot JC et al (2012) Fungal strategies for lignin degradation. Adv Bot Res. https://doi.org/10.1016/b978-0-12-416023-1.00008-2
Singh G (2017) Enzymes : applications in pulp and paper industry Author’ s personal copy. Agro-Ind Wastes Feedstock Enzyme Prod. https://doi.org/10.1016/B978-0-12-802392-1.0007-1
Singh, Singh (2016) White and brown rot fungi as decomposers of lignocellulosic materials and their role in waste and pollution control. Fungal Appl Sustain Eviron Biotechnol. https://doi.org/10.1007/978-3-319-42852-9
Singh R et al (2012) Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity. J Biol Chem 287(13):10623–10630. https://doi.org/10.1074/jbc.m111.332171
Solomon EI, Augustine AJ, Yoon J (2008) O2 Reduction to H2O by the multicopper oxidases. Dalton Trans 9226(30):3921–3932. https://doi.org/10.1039/b800799c
Stanzione I et al (2020) Beyond natural laccases: extension of their potential applications by protein engineering. Appl Microbiol Biotechnol 104(3):915–924. https://doi.org/10.1007/s00253-019-10147-z
Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66(8):1387–1403. https://doi.org/10.1007/s00018-008-8651-8
Sugiura T et al (2009) Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 73(8):1793–1798. https://doi.org/10.1271/bbb.90152
Sun Z et al (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118(2):614–678. https://doi.org/10.1021/acs.chemrev.7b00588
Suzuki T et al (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67(10):2167–2175. https://doi.org/10.1271/bbb.67.2167
Theerachat M et al (2019) Laccases from marine organisms and their applications in the biodegradation of toxic and environmental pollutants: a review. Appl Biochem Biotechnol 187(2):583–611. https://doi.org/10.1007/s12010-018-2829-9
Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ 717:137222. https://doi.org/10.1016/j.scitotenv.2020.137222
Valls C et al (2019) A straightforward bioprocess for a cleaner paper decolorization. J Clean Prod 236:117702. https://doi.org/10.1016/j.jclepro.2019.117702
Virk AP, Sharma P, Capalash N (2012) Use of laccase in pulp and paper industry. Biotechnol Prog 28(1):21–32. https://doi.org/10.1002/btpr.727
Vares T, Niemenmaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of 14C-ring- labelled synthetic lignin by three Phlebia tremellosa strains. Appl Environm Microbiol 60(2):569–575. https://doi.org/10.1128/aem.60.2.569-575.1994
Welinder KG, Mauro JM, Norskov-Lauritsen L (1992) Structure of plant and fungal peroxidases. Biochem Soc Trans 20(2):337–340. https://doi.org/10.1042/bst0200337
Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-008-8279-z
Ximenes E et al (2010) Inhibition of cellulases by phenols. Enzyme Microbial Technol 46(3–4):170–176. https://doi.org/10.1016/j.enzmictec.2009.11.001
Xu Q et al (2009) Performance and efficiency of old newspaper deinking by combining cellulase/hemicellulase with laccase-violuric acid system. Waste Manag 29(5):1486–1490. https://doi.org/10.1016/j.wasman.2008.10.007
Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-2130-z
Yashas SR et al (2018) Laccase biosensor: green technique for quantification of phenols in wastewater (a review). Orient J Chem 34(2):631–637. https://doi.org/10.1300/ojc/340204
Yoshida T et al (2011) The catalytic mechanism of dye-decolorizing peroxidase DyP may require the swinging movement of an aspartic acid residue. FEBS J 278(13):2387–2394. https://doi.org/10.1111/j.1742-4658.2011.08161.x
Zámocký M et al (2015) Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 574:108–119. https://doi.org/10.1016/j.abb.2014.12.025
Zeng J et al (2017) Understanding factors controlling depolymerization and polymerization in catalytic degradation of β-ether linked model lignin compounds by versatile peroxidase. Green Chem 19(9):2145–2154. https://doi.org/10.1039/c6gc03379b