Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá kinh tế-kỹ thuật về việc nuôi trồng vi tảo trong một photobioreactor dạng ống để sản xuất thực phẩm trong khí hậu lục địa ẩm
Tóm tắt
Cá, nguồn chính cho axit béo thiết yếu n-3 eicosapentaenoic acid (EPA) và docosahexaenoic acid (DHA), không thể đáp ứng nhu cầu toàn cầu cho những chất dinh dưỡng quan trọng này, dẫn đến một khoảng trống cung ứng hiện tại lên tới 1.1 triệu tấn EPA + DHA mỗi năm. Việc khai thác thêm nguồn cá tự nhiên liên quan đến thiệt hại lớn cho hệ sinh thái. Vi tảo dầu là nguồn tự nhiên cho EPA và DHA và có thể góp phần vào việc thu hẹp khoảng trống này. Việc nuôi trồng trong các photobioreactor (PBR) ở khí hậu 'lạnh' cho thấy vi tảo so với cá nuôi trồng đều có những lợi thế nhất định. Nghiên cứu hiện tại đánh giá tiềm năng kinh tế của vi tảo cho thực phẩm trong mô hình hệ thống như vậy. Đánh giá kinh tế-kỹ thuật được thực hiện trên cơ sở mô hình hệ thống động cho việc nuôi trồng Nannochloropsis sp. ở quy mô công nghiệp tại miền trung Đức trong khoảng thời gian 30 năm. Giá trị hiện tại ròng (NPV) và tỷ suất hoàn vốn (ROI) đã được xác định cho một số kịch bản trong đó các thông số kỹ thuật và kinh tế khác nhau. Xét đến kích thước của PBR được xem xét, việc nuôi trồng Nannochloropsis sp. tạo ra một NPV dương là 4.5 triệu euro sau 30 năm, tương ứng với một ROI hàng năm là 1.87%. Phân tích độ nhạy tổng thể tạo ra các ROI hàng năm trong khoảng từ 1.12 đến 2.47%. Chi phí lớn bao gồm cơ sở hạ tầng PBR, chi phí bảo trì và lao động. Một mùa vụ kéo dài thêm bốn tuần đã làm cho NPV vượt trội gần một phần ba (32%). Việc tăng giá bán lên 15% đã dẫn đến NPV cao hơn 47%. So với cá hồi Đại Tây Dương (Salmo salar) được nuôi trong ao, chất lượng EPA từ Nannochloropsis sp. đã giúp giảm khoảng một nửa chi phí nuôi trồng (− 44 đến − 60%). Trong nghiên cứu này, chúng tôi có thể chứng minh rằng vi tảo từ việc nuôi trồng tự dưỡng ánh sáng không chỉ có tiềm năng cung cấp chất dinh dưỡng thiết yếu cho con người, mà còn là một khoản đầu tư hấp dẫn, ngay cả trong khí hậu 'lạnh' nơi việc nuôi trồng không thể diễn ra quanh năm.
Từ khóa
#vi tảo #axit béo thiết yếu #eicosapentaenoic acid #docosahexaenoic acid #đánh giá kinh tế-kỹ thuật #photobioreactor #nuôi trồng thủy sản #khí hậu lục địa ẩmTài liệu tham khảo
Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18. https://doi.org/10.1016/j.copbio.2013.08.003
Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17:1–29. https://doi.org/10.3390/md17050304
Barsanti L, Gualtieri P (2018) Is exploitation of microalgae economically and energetically sustainable? Algal Res 31:107–115. https://doi.org/10.1016/j.algal.2018.02.001
Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revisited: from Köppen to Trewartha. Clim Res 59:1–13. https://doi.org/10.3354/cr01204
Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886. https://doi.org/10.3390/en6115869
Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756. https://doi.org/10.1007/s10811-013-9983-9
Chen J (2020a) Return on investment (ROI). In: Investopedia. https://www.investopedia.com/terms/r/returnoninvestment.asp. Accessed 10 Mar 2020
Chen J (2020b) Annualized total return. In: Investopedia. https://www.investopedia.com/terms/a/annualized-total-return.asp. Accessed 10 Mar 2020
Chini Zittelli G, Lavista F, Bastianini A et al (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312. https://doi.org/10.1016/S0168-1656(99)00082-6
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
de Oliveira Finco AM, Mamani LDG, de Carvalho JC et al (2016) Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 37:656–671. https://doi.org/10.1080/07388551.2016.1213221
De Vree JH, Bosma R, Janssen M et al (2015) Comparison of four outdoor pilot-scale photobioreactors. Biotechnol Biofuels 8:1–12. https://doi.org/10.1186/s13068-015-0400-2
EFSA Panel on Dietetic Products Nutrition and Allergies (NDA) (2012) Scientific Opinion on the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J 10:1–48. https://doi.org/10.2903/j.efsa.2012.2815
Enzing C, Ploeg M, Barbosa M, Sijtsma L (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. JR Sci Policy Rep.https://doi.org/10.2791/3339
EUMOFA - European Market Observatory for Fisheries and Aquaculture Products (2018) The EU Fish Market. Brussels. https://doi.org/10.2771/41473
European Commission (2018) DURCHFÜHRUNGSVERORDNUNG (EU) 2018/1023 DER KOMMISSION vom 23. Juli 2018 zur Berichtigung der Durchführungsverordnung (EU) 2017/2470 zur Erstellung der Unionsliste der neuartigen Lebensmittel
Eurostat (2019) Industriestrompreis in Deutschland in den Jahren 2000 bis 2018 (in Euro-Cent pro Kilowattstunde). https://de.statista.com/statistik/daten/studie/155964/umfrage/entwicklung-der-industriestrompreise-in-deutschland-seit-1995/
FAO (2018) The State of World Fisheries and Aquaculture 2018: meeting the sustainable development goals. Rome
Frischknecht R, Büsser Knöpfel S (2013) Ökofaktoren Schweiz 2013 gemäss der Methode der ökologischen Knappheit - Methodische Grundlagen und Anwendung auf die Schweiz. Bundesamt für Umwelt BAFU 256
Galán B, Santos-Merino M, Nogales J et al (2019) Microbial oils as nutraceuticals and animal feeds. In: Goldfine H (ed) Health consequences of microbial interactions with hydrocarbons, oils, and lipids. Springer, Cham, pp 1–45. https://doi.org/10.1007/978-3-319-72473-7_34-1
García JL, de Vicente M, Galán B (2017) Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 10:1017–1024. https://doi.org/10.1111/1751-7915.12800
Hilpisch Y (2014) Python for finance. In: MacDonald B, Blanchette M (eds). O’Reilly Media Inc., Sebastopol. https://doi.org/10.1111/febs.12952
ISO Organisation (2006) ISO 14044:2006 - environmental management - life cycle assessment - requirements and guidelines. Genf
Iversen A, Asche F, Hermansen Ø, Nystøyl R (2020) Production cost and competitiveness in major salmon farming countries 2003–2018. Aquaculture. https://doi.org/10.1016/j.aquaculture.2020.735089
Keller H, Reinhardt GA, Rettenmaier N et al (2017) Integrated sustainability assessment of algae-based PUFA production. In: PUFAChain project reports, supported by the EU’s FP7 under GA No. 613303. IFEU - Institute for Energy and Environmental Research Heidelberg, Heidelberg. https://www.ifeu.de/algae
Lardon L, Helias A, Sialve B et al (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481
Lauer M (2008) Methodology guideline on techno economic assessment (TEA). Graz
Lundquist T, Woertz I, Quinn N, Benemann J (2010) A realistic technology and engineering assessment of algae biofuel production. Berkeley, California
Ma XN, Chen TP, Yang B et al (2016) Lipid production from Nannochloropsis. Mar Drugs. https://doi.org/10.3390/md14040061
Matos ÂP (2017) The impact of microalgae in food science and technology. JAOCS, J Am Oil Chem Soc 94:1333–1350. https://doi.org/10.1007/s11746-017-3050-7
Meier T (2017) Planetary boundaries of agriculture and nutrition: an Anthropocene approach. In: Proceedings of the symposium on communicating and designing the future of food in the anthropocene. Bachmann Verlag, Berlin, pp 69–79
Mišurcová L, Škrovánková S, Samek D et al (2012) Health benefits of algal polysaccharides in human nutrition. In: Henry J (ed) Advances in food and nutrition research, vol 66. Elsevier Inc, pp 75–145. https://doi.org/10.1016/B978-0-12-394597-6.00003-3
Molino A, Iovine A, Casella P et al (2018) Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. Int J Environ Res Public Health 15:2436. https://doi.org/10.3390/ijerph15112436
NASA—National Aeronautics and Space Administration (2019) Power data access viewer. https://power.larc.nasa.gov/data-access-viewer/
Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190. https://doi.org/10.1016/j.algal.2016.06.007
Patil V, Tran KQ, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9:1188–1195. https://doi.org/10.3390/ijms9071188
Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644
Pérez-López P, de Vree JH, Feijoo G et al (2017) Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Appl Energy 205:1151–1164. https://doi.org/10.1016/j.apenergy.2017.08.102
Posten C (2012) Design and performance parameters of photobioreactors. Tech - Theor und Prax 21:38–45
Probst L, Frideres L, Pedersen B et al (2015) Sustainable, safe and nutritious food. Business Innovation Observatory, European Union, vol 17
Qiu C, He Y, Huang Z et al (2019) Lipid extraction from wet Nannochloropsis biomass via enzyme-assisted three phase partitioning. Bioresour Technol 284:381–390. https://doi.org/10.1016/j.biortech.2019.03.148
Rebolloso-Fuentes M, Navarro-Perez A, Ramos-Miras JJ, Guil-Guerrero JL (2007) Biomass nutrient profiles of the Microalga Phaeodactylum tricornutum. J Food Biochem 25:57–76. https://doi.org/10.1111/j.1745-4514.2001.tb00724.x
Rockström J, Edenhofer O, Gaertner J, DeClerck F (2020) Planet-proofing the global food system. Nat Food 1:3–5. https://doi.org/10.1038/s43016-019-0010-4
Ryckebosch E, Bruneel C, Termote-Verhalle R et al (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400. https://doi.org/10.1016/j.foodchem.2014.03.087
Salem N, Eggersdorfer M (2015) Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Curr Opin Clin Nutr Metab Care 18:147–154. https://doi.org/10.1097/MCO.0000000000000145
Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF, (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26:709–722. https://doi.org/10.1016/j.sjbs.2017.11.003
Schade S, Meier T (2019) A comparative analysis of the environmental impacts of cultivating microalgae in different production systems and climatic zones: a systematic review and meta-analysis. Algal Res. https://doi.org/10.1016/J.ALGAL.2019.101485
Schade S, Meier T (2020) Distinct microalgae species for food—part 1: a methodological (top–down) approach for the life cycle assessment of microalgae cultivation in tubular photobioreactors. J Appl Phycol 32:2977–2995. https://doi.org/10.1007/s10811-020-02177-2
Schade S, Stangl GI, Meier T (2020) Distinct microalgae species for food—part 2: comparative life cycle assessment of microalgae and fish for eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and protein. J Appl Phycol 32:2997–3013. https://doi.org/10.1007/s10811-020-02181-6
Schultz N, Wintersteller F (2016) Status and trends of photoautotrophic algae cultivation from the viewpoint of a glass manufacturer. In: European Algae Biomass. Berlin
Shimako AH, Tiruta-Barna L, Pigné Y et al (2016) Environmental assessment of bioenergy production from microalgae based systems. J Clean Prod 139:51–60. https://doi.org/10.1016/j.jclepro.2016.08.003
Short W, Packey D, Holt T (1995) A manual for the economic evaluation of energy efficiency and renewable energy technologies. Renew Energy 95:73–81. NREL/TP-462-5173
Skarka J (2012) Microalgae biomass potential in Europe: land availability as a key issue. Tech - Theor und Prax 21:72–79
Templeton DW, Laurens LML (2015) Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel. Algal Res 11:359–367. https://doi.org/10.1016/j.algal.2015.07.013
Thomassen G, Egiguren Vila U, Van Dael M et al (2016) A techno-economic assessment of an algal-based biorefinery. Clean Technol Environ Policy 18:1849–1862. https://doi.org/10.1007/s10098-016-1159-2
Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107. https://doi.org/10.1016/j.aquaculture.2015.01.010
Trading Economics (2019) Germany bank lending rate. https://tradingeconomics.com/germany/bank-lending-rate. Accessed 3 Dec 2019
U.S. Bureau of Labor Statistics (2019) Producer price index by commodity for chemicals and allied products: carbon dioxide [WPU06790302]. https://fred.stlouisfed.org/series/WPU06790302. Accessed 25 Nov 2019
UKForex Limited (OFX) (2019) Yearly average rates. https://www.ofx.com/en-gb/forex-news/historical-exchange-rates/yearly-average-rates/
van der Voort MPJ, Spruijt J, Potters J, et al (2017) Socio-economic assessment of Algae-based PUFA production. Public output report of the PUFAChain project
Walsh MJ, Gerber Van Doren L, Shete N et al (2018) Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions. Appl Energy 210:591–603. https://doi.org/10.1016/j.apenergy.2017.08.060
Wang TH, Hsu CL, Huang CH et al (2016) Environmental impact of CO2-expanded fluid extraction technique in microalgae oil acquisition. J Clean Prod 137:813–820. https://doi.org/10.1016/j.jclepro.2016.07.179
World Bank (2019) World Bank commodity price data (The Pink Sheet): monthly prices. https://www.worldbank.org/en/research/commodity-markets
Zhu Y, Anderson DB, Jones SB (2018) Algae farm cost model: considerations for photobioreactors. Richland. https://doi.org/10.2172/1485133
Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356. https://doi.org/10.1016/0031-9422(94)00913-E
Zimmermann AW, Wunderlich J, Müller L et al (2020) Techno-economic assessment guidelines for CO2 utilization. Front Energy Res 8:1–23. https://doi.org/10.3389/fenrg.2020.00005