Technical Stability of Nonlinear Spatial Dynamic States of Continuous Systems in the Case of Their Interaction with a Flow of a Liquid

Nonlinear Oscillations - Tập 5 - Trang 39-52 - 2002
K. S. Matviichuk1
1Tymoshenko Institute of Mechanics, Ukrainian Academy of Sciences, Kiev

Tài liệu tham khảo

N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics [in Russian], Ukrainian Academy of Sciences, Kiev (1935). V. V. Novozhilov, Theory of Elasticity [in Russian], Sudpromgiz, Leningrad (1958). H. M. Savin and O. S. Parasyuk, “Elastoplastic problems with biharmonic plastic state,” Dop. Akad. Nauk Ukr. RSR, No. 4, 53-56 (1947). A. N. Guz', Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971). A. V. Voznyuk and V. G. Kolomiets, “Application of asymptotic methods of nonlinear mechanics to the investigation of one-frequency oscillations of bars of variable cross section,” Mat. Fiz., Issue 6, 66-72 (1969). V. A. Svetlitskii, Mechanics of Flexible Bars and Fibers [in Russian], Mashinostroenie, Moscow (1982). I. A. Lukovskii, Introduction to Nonlinear Dynamics of a Solid Body with Cavities Containing a Liquid [in Russian], Naukova Dumka, Kiev (1990). H. Leipholz, Stability of Elastic Systems, Alphen aan den Rijn, Sijhoff et Noordhoff (1980). V. I. Zubov, Stability of Motion [in Russian], Vysshaya Shkola, Moscow (1973). D. G. Korenevskii, Stability of Solutions of Deterministic and Stochastic Differential Difference Equations [in Russian], Naukova Dumka, Kiev (1992). A. A. Movchan, “On the direct Lyapunov method in problems of stability of elastic systems,” Prikl. Mat. Mekh., 23, No. 3, 483-494 (1959). F. D. Bairamov, “On the technical stability of systems with distributed and lumped parameters,” Izv. Vyssh. Uchebn. Zaved., Ser. Aviats. Tekhn., No. 2, 19-24 (1975). N. F. Kirichenko, On Some Problems of Stability and Controllability of Motion [in Russian], Kiev University, Kiev (1972). T. K. Sirazetdinov, Stability of Systems with Distributed Parameters [in Russian], Nauka, Novosibirsk (1987). F. G. Garashchenko and N. F. Kirichenko, “Investigation of problems of practical stability and stabilization of motion,” Mekh. Tverd. Tela, No. 6, 15-24 (1975). G. I. Kamenkov, “On the stability on a finite time interval,” Prikl. Mat. Mekh., 17, Issue 5, 529-540 (1953). V. M. Matrosov, L.Yu. Anapol'skii, and S. N. Vasil'ev, Method of Comparison in the Mathematical Theory of Systems [in Russian], Nauka, Novosibirsk (1980). K. S. Matviichuk, “On the method of comparison for differential equations close to hyperbolic,” Differents. Uravn., 20, No. 11, 2009-2011 (1984). K. S. Matviichuk, “Technical stability of parametrically excited distributed processes,” Prikl. Mat. Mekh., 50, Issue 2, 210-218 (1986). K. S. Matviichuk, “Technical stability of nonlinear parametrically excited distributed processes,” Differents. Uravn., 22, No. 11, 2001-2004 (1986). K. S. Matviichuk, “On the technical stability of the motion of panels in a gaseous flow,” Prikl. Mekh. Tekhn. Fiz., No. 6, 93-99 (1988). K. S. Matviichuk, “On conditions of technical stability of a dynamic process characterizing the rotation of a solid on a vertical elastic bar,” Prikl. Mekh., 26, No. 5, 96-102 (1990). K. S. Matviichuk, “Technical theory of stability of parametrically excited panels in a gaseous flow,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 122-131 (1990). K. S. Matviichuk, “Technical stability of the process of motion of two connected platforms carrying moving flywheels,” Izv. Ros. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 3-10 (1993). K. S. Matviichuk, “On conditions for the technical stability of controlled processes with distributed parameters,” Ukr. Mat. Zh., 49, No. 10, 1337-1344 (1997). N. A. Pustovoitov, “On approximate methods for the construction of Lyapunov functions,” in: Problems of Analytical Mechanics, Stability, and Control over Motion [in Russian], Nauka, Novosibirsk (1991), pp. 99-104. K. G. Valeev and G. S. Finin, Construction of Lyapunov Functions [in Russian], Naukova Dumka, Kiev (1981). J. Szarski, Differential Inequalities, PWN, Warsaw (1967).