Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines
Tài liệu tham khảo
Chang, 1967, Lincomycin, 440
Chang, 1979, Lincomycin, 127
Hurley, 1977, Pyrrolo(1,4)benzodiazepine antitumor antibiotics. Comparative aspects of anthramycin, tomaymycin and sibiromycin, J. Antibiot. (Tokyo), 30, 349, 10.7164/antibiotics.30.349
Baraldi, 2004, DNA minor groove binders as potential antitumor and antimicrobial agents, Med. Res. Rev., 24, 475, 10.1002/med.20000
Hartley, 2011, The development of pyrrolobenzodiazepines as antitumour agents, Expert Opin. Investig. Drugs, 20, 733, 10.1517/13543784.2011.573477
Gerratana, 2012, Biosynthesis, synthesis and biological activities of pyrrolobenzodiazepines, Med. Res. Rev., 32, 254, 10.1002/med.20212
Andres, 1990, Hormaomycin, a new peptide lactone antibiotic effective in inducing cytodifferentiation and antibiotic biosynthesis in some Streptomyces species, Z. Für Naturforschung C., 45, 851, 10.1515/znc-1990-7-817
Hurley, 1979, Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthetic conversion of tyrosine to the C2- and C3-proline moieties of anthramycin, tomaymycin, and sibiromycin, Biochemistry (Mosc), 18, 4230, 10.1021/bi00586a030
Brahme, 1984, Biosynthesis of the lincomycins. 1. Studies using stable isotopes on the biosynthesis of the propyl- and ethyl-l-hygric acid moieties of lincomycins A and B, J. Am. Chem. Soc., 106, 7873, 10.1021/ja00337a038
Höfer, 2011, Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite, Chem. Biol., 18, 381, 10.1016/j.chembiol.2010.12.018
Mason, 1963, Lincomycin, a new antibiotic. I. Discovery and biological properties, Antimicrob. Agents Chemother., 554–559
Herr, 1963, Lincomycin, a new antibiotic II. Isolation and characterisation, Antimicrob. Agents Chemother., 560–564
Schaffer, 1963, Lincomycin—a new antibiotic studies in children carrying β-hemolytic streptococci in association with acute pharyngitis, tonsillitis, or both, Clin. Pediatr. (Phila.), 2, 642, 10.1177/000992286300201110
Hoeksema, 1954, Isolation and purification of celesticetin, Antibiot. Annu., 837
DeBoer, 1954, Celesticetin — a new crystallin antibiotic I. Biologic studies of celesticetin, Antibiot. Annu., 831
Hoeksema, 1964, Chemical studies on lincomycin. I. The structure of lincomycin, J. Am. Chem. Soc., 86, 4223, 10.1021/ja01073a083
Schroeder, 1967, Lincomycin. III. Structure and stereochemistry of the carbohydrate moiety, J. Am. Chem. Soc., 89, 2448, 10.1021/ja00986a036
Slomp, 1967, Lincomycin. IV. Nuclear magnetic resonance studied on the structure of lincomycin, its degradation products, and some analogs, J. Am. Chem. Soc., 89, 2454, 10.1021/ja00986a037
Magerlein, 1967, Lincomycin. V. Amino acid fragment, J. Am. Chem. Soc., 89, 2459, 10.1021/ja00986a038
Argoudelis, 1969, Biosynthesis of lincomycin. IV. Origin of methyl groups, Biochemistry (Mosc), 8, 3408, 10.1021/bi00836a040
Witz, 1971, Bioconversion of tyrosine into the propylhygric acid moiety of lincomycin, Biochemistry (Mosc), 10, 1128, 10.1021/bi00783a005
Peschke, 1994, Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11, Mol. Microbiol., 16, 1137, 10.1111/j.1365-2958.1995.tb02338.x
Josten, 1964, The mode of action of lincomycin, Biochem. Biophys. Res. Commun., 14, 241, 10.1016/0006-291X(64)90442-5
Magerlein, 1967, Lincomycin. VI. 4′-Alkyl analogs of lincomycin. Relationship between structure and antibacterial activity, J. Med. Chem., 10, 355, 10.1021/jm00315a015
Birkenmeyer, 1970, Lincomycin. XI. Synthesis and structure of clindamycin, a potent antibacterial agent, J. Med. Chem., 13, 616, 10.1021/jm00298a007
Tendler, 1963, “Refuin”: a non-cytotoxic carcinostatic compound proliferated by a thermophilic actinomycete, Nature, 199, 501, 10.1038/199501a0
Leimgruber, 1965, The structure of anthramycin, J. Am. Chem. Soc., 87, 5793, 10.1021/ja00952a051
Leimgruber, 1965, Isolation and characterization of anthramycin, a new antitumor antibiotic, J. Am. Chem. Soc., 87, 5791, 10.1021/ja00952a050
Arima, 1972, Studies on tomaymycin, a new antibiotic. I. Isolation and properties of tomaymycin, J. Antibiot. (Tokyo), 25, 437, 10.7164/antibiotics.25.437
Gause, 1969, Production of antibiotic sibiromycin by Streptosporangium sibiricum, Antibiot. Mosc., 14, 963
Korman, 1965, Clinical investigation of cancer chemotherapeutic agents for neoplastic disease, J. New Drugs., 5, 275, 10.1002/j.1552-4604.1965.tb00247.x
Nepali, 2014, Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids, Eur. J. Med. Chem., 77, 422, 10.1016/j.ejmech.2014.03.018
Hurley, 1975, Biosynthesis of anthramycin. Determination of the labeling pattern by the use of radioactive and stable isotope techniques, J. Am. Chem. Soc., 97, 4372, 10.1021/ja00848a040
Hurley, 1979, Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthesis of the antitumor antibiotic sibiromycin by Streptosporangium sibiricum, Biochemistry (Mosc), 18, 4225, 10.1021/bi00586a029
Hurley, 1980, Elucidation and formulation of novel biosynthetic pathways leading to the pyrrolo[1,4]benzodiazepine antibiotics anthramycin, tomaymycin, and sibiromycin, Acc. Chem. Res., 13, 263, 10.1021/ar50152a003
Hu, 2007, Benzodiazepine biosynthesis in Streptomyces refuineus, Chem. Biol., 14, 691, 10.1016/j.chembiol.2007.05.009
Li, 2009, Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog, Appl. Environ. Microbiol., 75, 2958, 10.1128/AEM.02325-08
Li, 2009, Biosynthesis of sibiromycin, a potent antitumor antibiotic, Appl. Environ. Microbiol., 75, 2869, 10.1128/AEM.02326-08
Najmanova, 2014, Sequence analysis of porothramycin biosynthetic gene cluster, Folia Microbiol. (Praha), 59, 543, 10.1007/s12223-014-0339-x
Rössner, 1990, Elucidation of the structure of hormaomycin, Angew. Chem. Int. Ed. Engl., 29, 64, 10.1002/anie.199000641
Kuo, 1992, Isolation and identification of 3-propylidene-delta 1-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin, J. Antibiot. (Tokyo), 45, 1773, 10.7164/antibiotics.45.1773
Coats, 1989, Discovery, production, and biological assay of an unusual flavenoid cofactor involved in lincomycin biosynthesis, J. Antibiot. (Tokyo), 42, 472, 10.7164/antibiotics.42.472
Kuo, 1989, Isolation and identification of 7,8-didemethyl-8-hydroxy-5-deazariboflavin, an unusual cosynthetic factor in streptomycetes, from Streptomyces lincolnensis, J. Antibiot. (Tokyo), 42, 475, 10.7164/antibiotics.42.475
Ulanova, 2010, Mutasynthesis of lincomycin derivatives with activity against drug-resistant staphylococci, Antimicrob. Agents Chemother., 54, 927, 10.1128/AAC.00918-09
Smith, 1976, A study of the supposed hydroxylation of tyrosine catalysed by peroxidase, Biochem. J., 153, 403, 10.1042/bj1530403
Klibanov, 1981, Preparative hydroxylation of aromatic compounds catalyzed by peroxidase, J. Am. Chem. Soc., 103, 6263, 10.1021/ja00410a067
Carvalho, 2000, l-DOPA production by immobilized tyrosinase, Appl. Biochem. Biotechnol., 84–86, 791, 10.1385/ABAB:84-86:1-9:791
Surwase, 2012, Efficient microbial conversion of l-tyrosine to l-DOPA by Brevundimonas sp, SGJ, Appl. Biochem. Biotechnol, 167, 1015, 10.1007/s12010-012-9564-4
Neusser, 1998, The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of l-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A, Arch. Microbiol., 169, 322, 10.1007/s002030050578
Neumann, 2008, Halogenation strategies in natural product biosynthesis, Chem. Biol., 15, 99, 10.1016/j.chembiol.2008.01.006
Zámocký, 2015, Independent evolution of four heme peroxidase superfamilies, Arch. Biochem. Biophys., 574, 108, 10.1016/j.abb.2014.12.025
Zámocký, 2004, Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases, Eur. J. Biochem., 271, 3297, 10.1111/j.1432-1033.2004.04262.x
Hofrichter, 2014, Oxidations catalyzed by fungal peroxygenases, Curr. Opin. Chem. Biol., 19, 116, 10.1016/j.cbpa.2014.01.015
Tang, 2012, Characterization of SfmD as a heme peroxidase that catalyzes the regioselective hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine in saframycin A biosynthesis, J. Biol. Chem., 287, 5112, 10.1074/jbc.M111.306316
Hrycay, 2012, The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450, Arch. Biochem. Biophys., 522, 71, 10.1016/j.abb.2012.01.003
Connor, 2011, A heme peroxidase with a functional role as an l-tyrosine hydroxylase in the biosynthesis of anthramycin, Biochemistry (Mosc), 50, 8926, 10.1021/bi201148a
Novotna, 2013, Lincomycin biosynthesis involves a tyrosine hydroxylating heme protein of an unusual enzyme family, PLoS ONE, 8, 10.1371/journal.pone.0079974
Poulos, 1996, The role of the proximal ligand in heme enzymes, JBIC, J. Biol. Inorg. Chem., 1, 356, 10.1007/s007750050064
Wang, 2013, Driving force for oxygen-atom transfer by heme-thiolate enzymes, Angew. Chem. Int. Ed., 52, 9238, 10.1002/anie.201302137
Poulos, 2014, Heme enzyme structure and function, Chem. Rev., 114, 3919, 10.1021/cr400415k
Osman, 1996, Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism, Eur. J. Biochem., 240, 232, 10.1111/j.1432-1033.1996.0232h.x
Ozaki, 1995, Molecular engineering of horseradish peroxidase: thioether sulfoxidation and styrene epoxidation by Phe-41 leucine and threonine mutants, J. Am. Chem. Soc., 117, 7056, 10.1021/ja00132a003
Rietjens, 1996, On the role of the axial ligand in heme-based catalysis of the peroxidase and P450 type, JBIC, J. Biol. Inorg. Chem., 1, 372, 10.1007/s007750050068
Veeger, 2002, Does P450-type catalysis proceed through a peroxo-iron intermediate? A review of studies with microperoxidase, J. Inorg. Biochem., 91, 35, 10.1016/S0162-0134(02)00393-8
Dordick, 1986, Horseradish peroxidase-catalyzed hydroxylations: mechanistic studies, Biochemistry (Mosc), 25, 2946, 10.1021/bi00358a032
Gumiero, 2010, An analysis of substrate binding interactions in the heme peroxidase enzymes: a structural perspective, Arch. Biochem. Biophys., 500, 13, 10.1016/j.abb.2010.02.015
Sundaramoorthy, 1995, The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid, Structure, 3, 1367, 10.1016/S0969-2126(01)00274-X
Finzel, 1984, Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution, J. Biol. Chem., 259, 13027, 10.1016/S0021-9258(18)90651-4
de Montellano, 2010, Catalytic mechanisms of heme peroxidases, 79
Isaac, 1999, Haem iron-containing peroxidases, Essays Biochem., 34, 51, 10.1042/bse0340051
Ortiz de Montellano, 1987, Control of the catalytic activity of prosthetic heme by the structure of hemoproteins, Acc. Chem. Res., 20, 289, 10.1021/ar00140a004
Poulos, 1987, High-resolution crystal structure of cytochrome P450cam, J. Mol. Biol., 195, 687, 10.1016/0022-2836(87)90190-2
Poulos, 2010, Thirty years of heme peroxidase structural biology, Arch. Biochem. Biophys., 500, 3, 10.1016/j.abb.2010.02.008
Groves, 2003, The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies, Proc. Natl. Acad. Sci., 100, 3569, 10.1073/pnas.0830019100
Peter, 2011, Selective hydroxylation of alkanes by an extracellular fungal peroxygenase, FEBS J., 278, 3667, 10.1111/j.1742-4658.2011.08285.x
Hrycay, 1975, Sodium periodate, sodium chloride, organic hydroperoxides, and H2O2 as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P-450, Biochem. Biophys. Res. Commun., 66, 209, 10.1016/S0006-291X(75)80315-9
Nordblom, 1976, Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450, Arch. Biochem. Biophys., 175, 524, 10.1016/0003-9861(76)90541-5
Rittle, 2010, Cytochrome P450 compound I: capture, characterization, and C–H Bond activation kinetics, Science, 330, 933, 10.1126/science.1193478
Vlasits, 2010, Mechanisms of catalase activity of heme peroxidases, Arch. Biochem. Biophys., 500, 74, 10.1016/j.abb.2010.04.018
Arnao, 1990, A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1041, 43, 10.1016/0167-4838(90)90120-5
Hiner, 1995, A comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid, Eur. J. Biochem., 234, 506, 10.1111/j.1432-1033.1995.506_b.x
Hiner, 2000, Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide, Biochem. J., 348, 321, 10.1042/bj3480321
Zámockỳ, 2010, Molecular phylogeny of heme peroxidases, 7
Hayaishi, 1969, Nature and mechanisms of oxygenases, Science, 164, 389, 10.1126/science.164.3878.389
Hayaishi, 1950, Pyrocatecase: a new enzyme catalizing oxidative breakdown of pyrocatechin, J. Biochem. Tokyo., 37, 371, 10.1093/oxfordjournals.jbchem.a126205
Kojima, 1961, Metapyrocatechase: a new catechol-cleaving enzyme, J. Biol. Chem., 236, 2223, 10.1016/S0021-9258(18)64061-X
Vaillancourt, 2006, The ins and outs of ring-cleaving dioxygenases, Crit. Rev. Biochem. Mol. Biol., 41, 241, 10.1080/10409230600817422
He, 2011, Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily, J. Inorg. Biochem., 105, 1259, 10.1016/j.jinorgbio.2011.06.006
Barry, 2013, Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6, Biochemistry (Mosc), 52, 6724, 10.1021/bi400665t
Fetzner, 2012, Ring-cleaving dioxygenases with a cupin fold, Appl. Environ. Microbiol., 78, 2505, 10.1128/AEM.07651-11
Kukor, 1991, Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1, J. Bacteriol., 173, 4587, 10.1128/jb.173.15.4587-4594.1991
Parales, 1997, Cloning and sequence analysis of a catechol 2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp JS765, J. Ind. Microbiol. Biotechnol., 19, 385, 10.1038/sj.jim.2900420
Takeo, 2007, Purification and characterization of catechol 2,3-dioxygenase from the aniline degradation pathway of Acinetobacter sp. YAA and its mutant enzyme, which resists substrate inhibition, Biosci. Biotechnol. Biochem., 71, 1668, 10.1271/bbb.70079
Sparnins, 1976, Catabolism of l-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria, J. Bacteriol., 127, 362, 10.1128/jb.127.1.362-366.1976
Vetting, 2004, Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases, J. Bacteriol., 186, 1945, 10.1128/JB.186.7.1945-1958.2004
Asturias, 1994, Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases, J. Biol. Chem., 269, 7807, 10.1016/S0021-9258(17)37358-1
Vaillancourt, 2003, Characterization of extradiol dioxygenases from a polychlorinated biphenyl-degrading strain that possess higher specificities for chlorinated metabolites, J. Bacteriol., 185, 1253, 10.1128/JB.185.4.1253-1260.2003
Maeda, 1995, Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem, Appl. Environ. Microbiol., 61, 549, 10.1128/aem.61.2.549-555.1995
Mampel, 2005, Protocatechuate 4,5-dioxygenase from Comamonas testosteroni T-2: biochemical and molecular properties of a new subgroup within class III of extradiol dioxygenases, Arch. Microbiol., 183, 130, 10.1007/s00203-004-0755-4
Zhang, 2005, Structural studies on 3-hydroxyanthranilate-3, 4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis, Biochemistry (Mosc), 44, 7632, 10.1021/bi047353l
Bergdoll, 1998, All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly, Protein Sci., 7, 1661, 10.1002/pro.5560070801
Kobayashi, 1995, Overexpression of pseudomonas putida catechol 2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli, J. Biochem. (Tokyo), 117, 614, 10.1093/oxfordjournals.jbchem.a124753
Lee, 1996, Structure of catechol 2,3-dioxygenase gene encoded in chromosomal DNA of Pseudomonas putida KF715, Biochem. Biophys. Res. Commun., 224, 831, 10.1006/bbrc.1996.1108
Winkler, 1995, Tetrameric structure and cellular location of catechol 2,3-dioxygenase, Arch. Microbiol., 163, 65, 10.1007/BF00262205
Eltis, 1993, Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase, J. Biol. Chem., 268, 2727, 10.1016/S0021-9258(18)53834-5
Uragami, 2001, Crystal structures of substrate free and complex forms of reactivated BphC, an extradiol type ring-cleavage dioxygenase, J. Inorg. Biochem., 83, 269, 10.1016/S0162-0134(00)00172-0
Miller, 1996, Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. A dioxygenase with catalase activity, J. Biol. Chem., 271, 5524, 10.1074/jbc.271.10.5524
Wang, 1997, Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum, Protein Expr. Purif., 10, 1, 10.1006/prep.1996.0703
Heiss, 1995, Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6, J. Bacteriol., 177, 5865, 10.1128/jb.177.20.5865-5871.1995
Kosono, 1997, Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation, Appl. Environ. Microbiol., 63, 3282, 10.1128/aem.63.8.3282-3285.1997
Koehntop, 2005, The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes, J. Biol. Inorg. Chem., 10, 87, 10.1007/s00775-005-0624-x
Armstrong, 2000, Mechanistic diversity in a metalloenzyme superfamily†, Biochemistry (Mosc), 39, 13625, 10.1021/bi001814v
Meng, 2011, Topological variation in the evolution of new reactions in functionally diverse enzyme superfamilies, Curr. Opin. Struct. Biol., 21, 391, 10.1016/j.sbi.2011.03.007
Eswar, 2001, Comparative protein structure modeling using MODELLER
Huang, 1996
Colabroy, 2008, Biochemical characterization of l-DOPA 2,3-dioxygenase, a single-domain type I extradiol dioxygenase from lincomycin biosynthesis, Arch. Biochem. Biophys., 479, 131, 10.1016/j.abb.2008.08.022
Novotna, 2004, l-3,4-Dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis, Eur. J. Biochem. Sep., 271, 3678, 10.1111/j.1432-1033.2004.04308.x
Saha, 2015, Identification of the dioxygenase-generated intermediate formed during biosynthesis of the dihydropyrrole moiety common to anthramycin and sibiromycin, Bioorg. Med. Chem., 23, 449, 10.1016/j.bmc.2014.12.024
Notredame, 2000, T-coffee: a novel method for fast and accurate multiple sequence alignment1, J. Mol. Biol., 302, 205, 10.1006/jmbi.2000.4042
Robert, 2014, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., 42, W320, 10.1093/nar/gku316
Lipscomb, 2008, Mechanism of extradiol aromatic ring-cleaving dioxygenases, Curr. Opin. Struct. Biol., 18, 644, 10.1016/j.sbi.2008.11.001
Kovaleva, 2012, Structural basis for the role of tyrosine 257 of homoprotocatechuate 2,3-dioxygenase in substrate and oxygen activation, Biochemistry (Mosc), 51, 8755, 10.1021/bi301115c
Mbughuni, 2012, Substrate-mediated oxygen activation by homoprotocatechuate 2,3-dioxygenase: intermediates formed by a tyrosine 257 variant, Biochemistry (Mosc), 51, 8743, 10.1021/bi301114x
Groce, 2005, Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates†, Biochemistry (Mosc), 44, 7175, 10.1021/bi050180v
Gunderson, 2008, Electron paramagnetic resonance detection of intermediates in the enzymatic cycle of an extradiol dioxygenase, J. Am. Chem. Soc., 130, 14465, 10.1021/ja8052255
Groce, 2004, Single-turnover kinetics of homoprotocatechuate 2,3-dioxygenase†, Biochemistry (Mosc), 43, 15141, 10.1021/bi048690x
Kovaleva, 2008, Intermediate in the O–O bond cleavage reaction of an extradiol dioxygenase†,‡, Biochemistry (Mosc), 47, 11168, 10.1021/bi801459q
Mbughuni, 2011, Oxy intermediates of homoprotocatechuate 2,3-dioxygenase: facile electron transfer between substrates, Biochemistry (Mosc), 50, 10262, 10.1021/bi201436n
Mbughuni, 2010, Trapping and spectroscopic characterization of an FeIII-superoxo intermediate from a nonheme mononuclear iron-containing enzyme, Proc. Natl. Acad. Sci., 107, 16788, 10.1073/pnas.1010015107
Arciero, 1985, [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. Evidence for binding of exogenous ligands to the active site Fe2+ of extradiol dioxygenases, J. Biol. Chem., 260, 14035, 10.1016/S0021-9258(17)38681-7
Mabrouk, 1991, Variable-temperature variable-field magnetic circular dichroism studies of the iron(II) active site in metapyrocatechase: implications for the molecular mechanism of extradiol dioxygenases, J. Am. Chem. Soc., 113, 4053, 10.1021/ja00011a001
Vaillancourt, 2002, Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography, J. Am. Chem. Soc., 124, 2485, 10.1021/ja0174682
Spence, 1996, Cis-trans isomerization of a cyclopropyl radical trap catalyzed by extradiol catechol dioxygenases: evidence for a semiquinone intermediate, J. Am. Chem. Soc., 118, 8336, 10.1021/ja9607704
Winfield, 2000, Elucidation of the catalytic mechanisms of the non-haem iron-dependent catechol dioxygenases: synthesis of carba-analogues for hydroperoxide reaction intermediates, J. Chem. Soc. [Perkin 1], 3277, 10.1039/b004265j
Viggiani, 2004, The role of the conserved residues His-246, His-199, and Tyr-255 in the catalysis of catechol 2,3-dioxygenase from Pseudomonas stutzeri OX1, J. Biol. Chem., 279, 48630, 10.1074/jbc.M406243200
Sato, 2002, Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase, J. Mol. Biol., 321, 621, 10.1016/S0022-2836(02)00673-3
Sanvoisin, 1995, Mechanism of extradiol catechol dioxygenases: evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction, J. Am. Chem. Soc., 117, 7836, 10.1021/ja00134a041
Colabroy, 2014, Defining a kinetic mechanism for l-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from Streptomyces lincolnensis, Biochim. Biophys. Acta BBA Proteins Proteomics, 1844, 607, 10.1016/j.bbapap.2013.12.005
Dai, 2002, Identification and analysis of a bottleneck in PCB biodegradation, Nat. Struct. Mol. Biol., 9, 934, 10.1038/nsb866
Fortin, 2005, Evolutionarily divergent extradiol dioxygenases possess higher specificities for polychlorinated biphenyl metabolites, J. Bacteriol., 187, 415, 10.1128/JB.187.2.415-421.2005
Ishida, 2005, Single-turnover kinetics of 2,3-dihydroxybiphenyl 1,2-dioxygenase reacting with 3-formylcatechol, Biochem. Biophys. Res. Commun., 338, 223, 10.1016/j.bbrc.2005.08.218
Kita, 1999, An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2, Structure, 7, 25, 10.1016/S0969-2126(99)80006-9
Vaillancourt, 2002, The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates, J. Biol. Chem., 277, 2019, 10.1074/jbc.M106890200
Terradas, 1991, 2,3- and 4,5-Secodopa, the biosynthetic intermediates generated from l-DOPA by an enzyme system extracted from the fly agaric, Amanita muscaria L., and their spontaneous conversion to muscaflavin and betalamic acid, respectively, and betalains, Helv. Chim. Acta, 74, 124, 10.1002/hlca.19910740115
Bugg, 1998, Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways, Nat. Prod. Rep., 15, 513, 10.1039/a815513y