Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines

Keri L. Colabroy1
1Department of Chemistry, Muhlenberg College, Allentown, PA 18104, United States

Tài liệu tham khảo

Chang, 1967, Lincomycin, 440 Chang, 1979, Lincomycin, 127 Hurley, 1977, Pyrrolo(1,4)benzodiazepine antitumor antibiotics. Comparative aspects of anthramycin, tomaymycin and sibiromycin, J. Antibiot. (Tokyo), 30, 349, 10.7164/antibiotics.30.349 Baraldi, 2004, DNA minor groove binders as potential antitumor and antimicrobial agents, Med. Res. Rev., 24, 475, 10.1002/med.20000 Hartley, 2011, The development of pyrrolobenzodiazepines as antitumour agents, Expert Opin. Investig. Drugs, 20, 733, 10.1517/13543784.2011.573477 Gerratana, 2012, Biosynthesis, synthesis and biological activities of pyrrolobenzodiazepines, Med. Res. Rev., 32, 254, 10.1002/med.20212 Andres, 1990, Hormaomycin, a new peptide lactone antibiotic effective in inducing cytodifferentiation and antibiotic biosynthesis in some Streptomyces species, Z. Für Naturforschung C., 45, 851, 10.1515/znc-1990-7-817 Hurley, 1979, Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthetic conversion of tyrosine to the C2- and C3-proline moieties of anthramycin, tomaymycin, and sibiromycin, Biochemistry (Mosc), 18, 4230, 10.1021/bi00586a030 Brahme, 1984, Biosynthesis of the lincomycins. 1. Studies using stable isotopes on the biosynthesis of the propyl- and ethyl-l-hygric acid moieties of lincomycins A and B, J. Am. Chem. Soc., 106, 7873, 10.1021/ja00337a038 Höfer, 2011, Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite, Chem. Biol., 18, 381, 10.1016/j.chembiol.2010.12.018 Mason, 1963, Lincomycin, a new antibiotic. I. Discovery and biological properties, Antimicrob. Agents Chemother., 554–559 Herr, 1963, Lincomycin, a new antibiotic II. Isolation and characterisation, Antimicrob. Agents Chemother., 560–564 Schaffer, 1963, Lincomycin—a new antibiotic studies in children carrying β-hemolytic streptococci in association with acute pharyngitis, tonsillitis, or both, Clin. Pediatr. (Phila.), 2, 642, 10.1177/000992286300201110 Hoeksema, 1954, Isolation and purification of celesticetin, Antibiot. Annu., 837 DeBoer, 1954, Celesticetin — a new crystallin antibiotic I. Biologic studies of celesticetin, Antibiot. Annu., 831 Hoeksema, 1964, Chemical studies on lincomycin. I. The structure of lincomycin, J. Am. Chem. Soc., 86, 4223, 10.1021/ja01073a083 Schroeder, 1967, Lincomycin. III. Structure and stereochemistry of the carbohydrate moiety, J. Am. Chem. Soc., 89, 2448, 10.1021/ja00986a036 Slomp, 1967, Lincomycin. IV. Nuclear magnetic resonance studied on the structure of lincomycin, its degradation products, and some analogs, J. Am. Chem. Soc., 89, 2454, 10.1021/ja00986a037 Magerlein, 1967, Lincomycin. V. Amino acid fragment, J. Am. Chem. Soc., 89, 2459, 10.1021/ja00986a038 Argoudelis, 1969, Biosynthesis of lincomycin. IV. Origin of methyl groups, Biochemistry (Mosc), 8, 3408, 10.1021/bi00836a040 Witz, 1971, Bioconversion of tyrosine into the propylhygric acid moiety of lincomycin, Biochemistry (Mosc), 10, 1128, 10.1021/bi00783a005 Peschke, 1994, Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11, Mol. Microbiol., 16, 1137, 10.1111/j.1365-2958.1995.tb02338.x Josten, 1964, The mode of action of lincomycin, Biochem. Biophys. Res. Commun., 14, 241, 10.1016/0006-291X(64)90442-5 Magerlein, 1967, Lincomycin. VI. 4′-Alkyl analogs of lincomycin. Relationship between structure and antibacterial activity, J. Med. Chem., 10, 355, 10.1021/jm00315a015 Birkenmeyer, 1970, Lincomycin. XI. Synthesis and structure of clindamycin, a potent antibacterial agent, J. Med. Chem., 13, 616, 10.1021/jm00298a007 Tendler, 1963, “Refuin”: a non-cytotoxic carcinostatic compound proliferated by a thermophilic actinomycete, Nature, 199, 501, 10.1038/199501a0 Leimgruber, 1965, The structure of anthramycin, J. Am. Chem. Soc., 87, 5793, 10.1021/ja00952a051 Leimgruber, 1965, Isolation and characterization of anthramycin, a new antitumor antibiotic, J. Am. Chem. Soc., 87, 5791, 10.1021/ja00952a050 Arima, 1972, Studies on tomaymycin, a new antibiotic. I. Isolation and properties of tomaymycin, J. Antibiot. (Tokyo), 25, 437, 10.7164/antibiotics.25.437 Gause, 1969, Production of antibiotic sibiromycin by Streptosporangium sibiricum, Antibiot. Mosc., 14, 963 Korman, 1965, Clinical investigation of cancer chemotherapeutic agents for neoplastic disease, J. New Drugs., 5, 275, 10.1002/j.1552-4604.1965.tb00247.x Nepali, 2014, Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids, Eur. J. Med. Chem., 77, 422, 10.1016/j.ejmech.2014.03.018 Hurley, 1975, Biosynthesis of anthramycin. Determination of the labeling pattern by the use of radioactive and stable isotope techniques, J. Am. Chem. Soc., 97, 4372, 10.1021/ja00848a040 Hurley, 1979, Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthesis of the antitumor antibiotic sibiromycin by Streptosporangium sibiricum, Biochemistry (Mosc), 18, 4225, 10.1021/bi00586a029 Hurley, 1980, Elucidation and formulation of novel biosynthetic pathways leading to the pyrrolo[1,4]benzodiazepine antibiotics anthramycin, tomaymycin, and sibiromycin, Acc. Chem. Res., 13, 263, 10.1021/ar50152a003 Hu, 2007, Benzodiazepine biosynthesis in Streptomyces refuineus, Chem. Biol., 14, 691, 10.1016/j.chembiol.2007.05.009 Li, 2009, Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog, Appl. Environ. Microbiol., 75, 2958, 10.1128/AEM.02325-08 Li, 2009, Biosynthesis of sibiromycin, a potent antitumor antibiotic, Appl. Environ. Microbiol., 75, 2869, 10.1128/AEM.02326-08 Najmanova, 2014, Sequence analysis of porothramycin biosynthetic gene cluster, Folia Microbiol. (Praha), 59, 543, 10.1007/s12223-014-0339-x Rössner, 1990, Elucidation of the structure of hormaomycin, Angew. Chem. Int. Ed. Engl., 29, 64, 10.1002/anie.199000641 Kuo, 1992, Isolation and identification of 3-propylidene-delta 1-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin, J. Antibiot. (Tokyo), 45, 1773, 10.7164/antibiotics.45.1773 Coats, 1989, Discovery, production, and biological assay of an unusual flavenoid cofactor involved in lincomycin biosynthesis, J. Antibiot. (Tokyo), 42, 472, 10.7164/antibiotics.42.472 Kuo, 1989, Isolation and identification of 7,8-didemethyl-8-hydroxy-5-deazariboflavin, an unusual cosynthetic factor in streptomycetes, from Streptomyces lincolnensis, J. Antibiot. (Tokyo), 42, 475, 10.7164/antibiotics.42.475 Ulanova, 2010, Mutasynthesis of lincomycin derivatives with activity against drug-resistant staphylococci, Antimicrob. Agents Chemother., 54, 927, 10.1128/AAC.00918-09 Smith, 1976, A study of the supposed hydroxylation of tyrosine catalysed by peroxidase, Biochem. J., 153, 403, 10.1042/bj1530403 Klibanov, 1981, Preparative hydroxylation of aromatic compounds catalyzed by peroxidase, J. Am. Chem. Soc., 103, 6263, 10.1021/ja00410a067 Carvalho, 2000, l-DOPA production by immobilized tyrosinase, Appl. Biochem. Biotechnol., 84–86, 791, 10.1385/ABAB:84-86:1-9:791 Surwase, 2012, Efficient microbial conversion of l-tyrosine to l-DOPA by Brevundimonas sp, SGJ, Appl. Biochem. Biotechnol, 167, 1015, 10.1007/s12010-012-9564-4 Neusser, 1998, The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of l-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A, Arch. Microbiol., 169, 322, 10.1007/s002030050578 Neumann, 2008, Halogenation strategies in natural product biosynthesis, Chem. Biol., 15, 99, 10.1016/j.chembiol.2008.01.006 Zámocký, 2015, Independent evolution of four heme peroxidase superfamilies, Arch. Biochem. Biophys., 574, 108, 10.1016/j.abb.2014.12.025 Zámocký, 2004, Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases, Eur. J. Biochem., 271, 3297, 10.1111/j.1432-1033.2004.04262.x Hofrichter, 2014, Oxidations catalyzed by fungal peroxygenases, Curr. Opin. Chem. Biol., 19, 116, 10.1016/j.cbpa.2014.01.015 Tang, 2012, Characterization of SfmD as a heme peroxidase that catalyzes the regioselective hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine in saframycin A biosynthesis, J. Biol. Chem., 287, 5112, 10.1074/jbc.M111.306316 Hrycay, 2012, The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450, Arch. Biochem. Biophys., 522, 71, 10.1016/j.abb.2012.01.003 Connor, 2011, A heme peroxidase with a functional role as an l-tyrosine hydroxylase in the biosynthesis of anthramycin, Biochemistry (Mosc), 50, 8926, 10.1021/bi201148a Novotna, 2013, Lincomycin biosynthesis involves a tyrosine hydroxylating heme protein of an unusual enzyme family, PLoS ONE, 8, 10.1371/journal.pone.0079974 Poulos, 1996, The role of the proximal ligand in heme enzymes, JBIC, J. Biol. Inorg. Chem., 1, 356, 10.1007/s007750050064 Wang, 2013, Driving force for oxygen-atom transfer by heme-thiolate enzymes, Angew. Chem. Int. Ed., 52, 9238, 10.1002/anie.201302137 Poulos, 2014, Heme enzyme structure and function, Chem. Rev., 114, 3919, 10.1021/cr400415k Osman, 1996, Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism, Eur. J. Biochem., 240, 232, 10.1111/j.1432-1033.1996.0232h.x Ozaki, 1995, Molecular engineering of horseradish peroxidase: thioether sulfoxidation and styrene epoxidation by Phe-41 leucine and threonine mutants, J. Am. Chem. Soc., 117, 7056, 10.1021/ja00132a003 Rietjens, 1996, On the role of the axial ligand in heme-based catalysis of the peroxidase and P450 type, JBIC, J. Biol. Inorg. Chem., 1, 372, 10.1007/s007750050068 Veeger, 2002, Does P450-type catalysis proceed through a peroxo-iron intermediate? A review of studies with microperoxidase, J. Inorg. Biochem., 91, 35, 10.1016/S0162-0134(02)00393-8 Dordick, 1986, Horseradish peroxidase-catalyzed hydroxylations: mechanistic studies, Biochemistry (Mosc), 25, 2946, 10.1021/bi00358a032 Gumiero, 2010, An analysis of substrate binding interactions in the heme peroxidase enzymes: a structural perspective, Arch. Biochem. Biophys., 500, 13, 10.1016/j.abb.2010.02.015 Sundaramoorthy, 1995, The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid, Structure, 3, 1367, 10.1016/S0969-2126(01)00274-X Finzel, 1984, Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution, J. Biol. Chem., 259, 13027, 10.1016/S0021-9258(18)90651-4 de Montellano, 2010, Catalytic mechanisms of heme peroxidases, 79 Isaac, 1999, Haem iron-containing peroxidases, Essays Biochem., 34, 51, 10.1042/bse0340051 Ortiz de Montellano, 1987, Control of the catalytic activity of prosthetic heme by the structure of hemoproteins, Acc. Chem. Res., 20, 289, 10.1021/ar00140a004 Poulos, 1987, High-resolution crystal structure of cytochrome P450cam, J. Mol. Biol., 195, 687, 10.1016/0022-2836(87)90190-2 Poulos, 2010, Thirty years of heme peroxidase structural biology, Arch. Biochem. Biophys., 500, 3, 10.1016/j.abb.2010.02.008 Groves, 2003, The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies, Proc. Natl. Acad. Sci., 100, 3569, 10.1073/pnas.0830019100 Peter, 2011, Selective hydroxylation of alkanes by an extracellular fungal peroxygenase, FEBS J., 278, 3667, 10.1111/j.1742-4658.2011.08285.x Hrycay, 1975, Sodium periodate, sodium chloride, organic hydroperoxides, and H2O2 as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P-450, Biochem. Biophys. Res. Commun., 66, 209, 10.1016/S0006-291X(75)80315-9 Nordblom, 1976, Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450, Arch. Biochem. Biophys., 175, 524, 10.1016/0003-9861(76)90541-5 Rittle, 2010, Cytochrome P450 compound I: capture, characterization, and C–H Bond activation kinetics, Science, 330, 933, 10.1126/science.1193478 Vlasits, 2010, Mechanisms of catalase activity of heme peroxidases, Arch. Biochem. Biophys., 500, 74, 10.1016/j.abb.2010.04.018 Arnao, 1990, A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1041, 43, 10.1016/0167-4838(90)90120-5 Hiner, 1995, A comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid, Eur. J. Biochem., 234, 506, 10.1111/j.1432-1033.1995.506_b.x Hiner, 2000, Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide, Biochem. J., 348, 321, 10.1042/bj3480321 Zámockỳ, 2010, Molecular phylogeny of heme peroxidases, 7 Hayaishi, 1969, Nature and mechanisms of oxygenases, Science, 164, 389, 10.1126/science.164.3878.389 Hayaishi, 1950, Pyrocatecase: a new enzyme catalizing oxidative breakdown of pyrocatechin, J. Biochem. Tokyo., 37, 371, 10.1093/oxfordjournals.jbchem.a126205 Kojima, 1961, Metapyrocatechase: a new catechol-cleaving enzyme, J. Biol. Chem., 236, 2223, 10.1016/S0021-9258(18)64061-X Vaillancourt, 2006, The ins and outs of ring-cleaving dioxygenases, Crit. Rev. Biochem. Mol. Biol., 41, 241, 10.1080/10409230600817422 He, 2011, Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily, J. Inorg. Biochem., 105, 1259, 10.1016/j.jinorgbio.2011.06.006 Barry, 2013, Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6, Biochemistry (Mosc), 52, 6724, 10.1021/bi400665t Fetzner, 2012, Ring-cleaving dioxygenases with a cupin fold, Appl. Environ. Microbiol., 78, 2505, 10.1128/AEM.07651-11 Kukor, 1991, Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1, J. Bacteriol., 173, 4587, 10.1128/jb.173.15.4587-4594.1991 Parales, 1997, Cloning and sequence analysis of a catechol 2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp JS765, J. Ind. Microbiol. Biotechnol., 19, 385, 10.1038/sj.jim.2900420 Takeo, 2007, Purification and characterization of catechol 2,3-dioxygenase from the aniline degradation pathway of Acinetobacter sp. YAA and its mutant enzyme, which resists substrate inhibition, Biosci. Biotechnol. Biochem., 71, 1668, 10.1271/bbb.70079 Sparnins, 1976, Catabolism of l-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria, J. Bacteriol., 127, 362, 10.1128/jb.127.1.362-366.1976 Vetting, 2004, Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases, J. Bacteriol., 186, 1945, 10.1128/JB.186.7.1945-1958.2004 Asturias, 1994, Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases, J. Biol. Chem., 269, 7807, 10.1016/S0021-9258(17)37358-1 Vaillancourt, 2003, Characterization of extradiol dioxygenases from a polychlorinated biphenyl-degrading strain that possess higher specificities for chlorinated metabolites, J. Bacteriol., 185, 1253, 10.1128/JB.185.4.1253-1260.2003 Maeda, 1995, Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem, Appl. Environ. Microbiol., 61, 549, 10.1128/aem.61.2.549-555.1995 Mampel, 2005, Protocatechuate 4,5-dioxygenase from Comamonas testosteroni T-2: biochemical and molecular properties of a new subgroup within class III of extradiol dioxygenases, Arch. Microbiol., 183, 130, 10.1007/s00203-004-0755-4 Zhang, 2005, Structural studies on 3-hydroxyanthranilate-3, 4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis, Biochemistry (Mosc), 44, 7632, 10.1021/bi047353l Bergdoll, 1998, All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly, Protein Sci., 7, 1661, 10.1002/pro.5560070801 Kobayashi, 1995, Overexpression of pseudomonas putida catechol 2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli, J. Biochem. (Tokyo), 117, 614, 10.1093/oxfordjournals.jbchem.a124753 Lee, 1996, Structure of catechol 2,3-dioxygenase gene encoded in chromosomal DNA of Pseudomonas putida KF715, Biochem. Biophys. Res. Commun., 224, 831, 10.1006/bbrc.1996.1108 Winkler, 1995, Tetrameric structure and cellular location of catechol 2,3-dioxygenase, Arch. Microbiol., 163, 65, 10.1007/BF00262205 Eltis, 1993, Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase, J. Biol. Chem., 268, 2727, 10.1016/S0021-9258(18)53834-5 Uragami, 2001, Crystal structures of substrate free and complex forms of reactivated BphC, an extradiol type ring-cleavage dioxygenase, J. Inorg. Biochem., 83, 269, 10.1016/S0162-0134(00)00172-0 Miller, 1996, Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. A dioxygenase with catalase activity, J. Biol. Chem., 271, 5524, 10.1074/jbc.271.10.5524 Wang, 1997, Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum, Protein Expr. Purif., 10, 1, 10.1006/prep.1996.0703 Heiss, 1995, Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6, J. Bacteriol., 177, 5865, 10.1128/jb.177.20.5865-5871.1995 Kosono, 1997, Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation, Appl. Environ. Microbiol., 63, 3282, 10.1128/aem.63.8.3282-3285.1997 Koehntop, 2005, The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes, J. Biol. Inorg. Chem., 10, 87, 10.1007/s00775-005-0624-x Armstrong, 2000, Mechanistic diversity in a metalloenzyme superfamily†, Biochemistry (Mosc), 39, 13625, 10.1021/bi001814v Meng, 2011, Topological variation in the evolution of new reactions in functionally diverse enzyme superfamilies, Curr. Opin. Struct. Biol., 21, 391, 10.1016/j.sbi.2011.03.007 Eswar, 2001, Comparative protein structure modeling using MODELLER Huang, 1996 Colabroy, 2008, Biochemical characterization of l-DOPA 2,3-dioxygenase, a single-domain type I extradiol dioxygenase from lincomycin biosynthesis, Arch. Biochem. Biophys., 479, 131, 10.1016/j.abb.2008.08.022 Novotna, 2004, l-3,4-Dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis, Eur. J. Biochem. Sep., 271, 3678, 10.1111/j.1432-1033.2004.04308.x Saha, 2015, Identification of the dioxygenase-generated intermediate formed during biosynthesis of the dihydropyrrole moiety common to anthramycin and sibiromycin, Bioorg. Med. Chem., 23, 449, 10.1016/j.bmc.2014.12.024 Notredame, 2000, T-coffee: a novel method for fast and accurate multiple sequence alignment1, J. Mol. Biol., 302, 205, 10.1006/jmbi.2000.4042 Robert, 2014, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., 42, W320, 10.1093/nar/gku316 Lipscomb, 2008, Mechanism of extradiol aromatic ring-cleaving dioxygenases, Curr. Opin. Struct. Biol., 18, 644, 10.1016/j.sbi.2008.11.001 Kovaleva, 2012, Structural basis for the role of tyrosine 257 of homoprotocatechuate 2,3-dioxygenase in substrate and oxygen activation, Biochemistry (Mosc), 51, 8755, 10.1021/bi301115c Mbughuni, 2012, Substrate-mediated oxygen activation by homoprotocatechuate 2,3-dioxygenase: intermediates formed by a tyrosine 257 variant, Biochemistry (Mosc), 51, 8743, 10.1021/bi301114x Groce, 2005, Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates†, Biochemistry (Mosc), 44, 7175, 10.1021/bi050180v Gunderson, 2008, Electron paramagnetic resonance detection of intermediates in the enzymatic cycle of an extradiol dioxygenase, J. Am. Chem. Soc., 130, 14465, 10.1021/ja8052255 Groce, 2004, Single-turnover kinetics of homoprotocatechuate 2,3-dioxygenase†, Biochemistry (Mosc), 43, 15141, 10.1021/bi048690x Kovaleva, 2008, Intermediate in the O–O bond cleavage reaction of an extradiol dioxygenase†,‡, Biochemistry (Mosc), 47, 11168, 10.1021/bi801459q Mbughuni, 2011, Oxy intermediates of homoprotocatechuate 2,3-dioxygenase: facile electron transfer between substrates, Biochemistry (Mosc), 50, 10262, 10.1021/bi201436n Mbughuni, 2010, Trapping and spectroscopic characterization of an FeIII-superoxo intermediate from a nonheme mononuclear iron-containing enzyme, Proc. Natl. Acad. Sci., 107, 16788, 10.1073/pnas.1010015107 Arciero, 1985, [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. Evidence for binding of exogenous ligands to the active site Fe2+ of extradiol dioxygenases, J. Biol. Chem., 260, 14035, 10.1016/S0021-9258(17)38681-7 Mabrouk, 1991, Variable-temperature variable-field magnetic circular dichroism studies of the iron(II) active site in metapyrocatechase: implications for the molecular mechanism of extradiol dioxygenases, J. Am. Chem. Soc., 113, 4053, 10.1021/ja00011a001 Vaillancourt, 2002, Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography, J. Am. Chem. Soc., 124, 2485, 10.1021/ja0174682 Spence, 1996, Cis-trans isomerization of a cyclopropyl radical trap catalyzed by extradiol catechol dioxygenases: evidence for a semiquinone intermediate, J. Am. Chem. Soc., 118, 8336, 10.1021/ja9607704 Winfield, 2000, Elucidation of the catalytic mechanisms of the non-haem iron-dependent catechol dioxygenases: synthesis of carba-analogues for hydroperoxide reaction intermediates, J. Chem. Soc. [Perkin 1], 3277, 10.1039/b004265j Viggiani, 2004, The role of the conserved residues His-246, His-199, and Tyr-255 in the catalysis of catechol 2,3-dioxygenase from Pseudomonas stutzeri OX1, J. Biol. Chem., 279, 48630, 10.1074/jbc.M406243200 Sato, 2002, Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase, J. Mol. Biol., 321, 621, 10.1016/S0022-2836(02)00673-3 Sanvoisin, 1995, Mechanism of extradiol catechol dioxygenases: evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction, J. Am. Chem. Soc., 117, 7836, 10.1021/ja00134a041 Colabroy, 2014, Defining a kinetic mechanism for l-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from Streptomyces lincolnensis, Biochim. Biophys. Acta BBA Proteins Proteomics, 1844, 607, 10.1016/j.bbapap.2013.12.005 Dai, 2002, Identification and analysis of a bottleneck in PCB biodegradation, Nat. Struct. Mol. Biol., 9, 934, 10.1038/nsb866 Fortin, 2005, Evolutionarily divergent extradiol dioxygenases possess higher specificities for polychlorinated biphenyl metabolites, J. Bacteriol., 187, 415, 10.1128/JB.187.2.415-421.2005 Ishida, 2005, Single-turnover kinetics of 2,3-dihydroxybiphenyl 1,2-dioxygenase reacting with 3-formylcatechol, Biochem. Biophys. Res. Commun., 338, 223, 10.1016/j.bbrc.2005.08.218 Kita, 1999, An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2, Structure, 7, 25, 10.1016/S0969-2126(99)80006-9 Vaillancourt, 2002, The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates, J. Biol. Chem., 277, 2019, 10.1074/jbc.M106890200 Terradas, 1991, 2,3- and 4,5-Secodopa, the biosynthetic intermediates generated from l-DOPA by an enzyme system extracted from the fly agaric, Amanita muscaria L., and their spontaneous conversion to muscaflavin and betalamic acid, respectively, and betalains, Helv. Chim. Acta, 74, 124, 10.1002/hlca.19910740115 Bugg, 1998, Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways, Nat. Prod. Rep., 15, 513, 10.1039/a815513y