Taut Foliations, Left-Orderability, and Cyclic Branched Covers

Acta Mathematica Vietnamica - Tập 39 - Trang 599-635 - 2014
Cameron Gordon1, Tye Lidman1
1Department of Mathematics, The University of Texas at Austin, Austin, USA

Tóm tắt

We study the question of when cyclic branched covers of knots admit taut foliations, have left-orderable fundamental groups, and are not L-spaces.

Tài liệu tham khảo

Boileau, M., Boyer, S.: Graph manifolds \(\mathbb {Z}\)-homology 3-spheres and taut foliations. arXiv:1303.5264 (2013) Boyer, S., Clay, A.: Foliations, orders, representations, L-spaces and graph manifolds. arXiv:1401.7726 (2014) Bludov, V.V., Glass, A.M.W.: Word problems, embeddings, and free products of right-ordered groups with amalgamated subgroup. Proc. Lond. Math. Soc.(3) 99(3), 585–608 (2009) Boyer, S., Gordon, C. M., Watson, L.: On L-spaces and left-orderable fundamental groups. Math. Ann. 356(4), 1213–1245 (2013) Boyer, S., Rolfsen, D., Wiest, B.: Orderable 3-manifold groups. Ann. Inst. Fourier (Grenoble) 55(1), 243–288 (2005) Boyer, S., Zhang, X.: Cyclic surgery and boundary slopes. Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., vol.2, Am. Math. Soc., Providence, RI, pp. 62–79 (1997) Calegari, D.: Foliations and the geometry of 3-manifolds. Oxford Mathematical Monographs. Oxford University Press, Oxford (2007) Calegari, D., Dunfield, N.M.: Laminations and groups of homeomorphisms of the circle. Invent. Math. 152(1), 149–204 (2003) Clay, A., Lidman, T., Watson, L.: Graph manifolds, left-orderability and amalgamation. Algebr. Geom. Topol. 13(4), 2347–2368 (2013) Dehornoy, P.: Braid groups and left distributive operations. Trans. Am. Math. Soc. 345(1), 115–150 (1994) Da̧bkowski, M.K., Przytycki, J. H., Togha, A.A.: Non-left-orderable 3-manifold groups. Canad. Math. Bull 48(1), 32–40 (2005) Eisenbud, D., Hirsch, U., Neumann, W.: Transverse foliations of Seifert bundles and self-homeomorphism of the circle. Comment. Math. Helv. 56(4), 638–660 (1981) Gabai, D.: Foliations and the topology of 3-manifolds. J. Differ. Geom. 18(3), 445–503 (1983) Gabai, D.: Foliations and the topology of 3-manifolds. III. J. Differ. Geom. 26(3), 479–536 (1987) Gordon, C. McA., Litherland, R.A.: Incompressible surfaces in branched coverings. The Smith conjecture (New York, 1979), Pure Appl. Math., Vol. 112, pp. 139–152. Academic, Orlando (1984) Greene, J.E.: Alternating links and left-orderability. arXiv:1107.5232 (2011) Hu, Y.: The left-orderability and the cyclic branched coverings. arXiv:1311.3291 (2013) Ito, T.: Non-left-orderable double branched coverings. Algebr. Geom. Topol. 13(4), 1937–1965 (2013) Jankins, M., Neumann, W.: Rotation numbers of products of circle homeomorphisms. Math. Ann. 271(3), 381–400 (1985) Kronheimer, P., Mrowka, T.: Witten’s conjecture and property P. Geom. Topol. 8, 2004. (electronic) Kronheimer, P., Mrowka, T., Ozsváth, P., Szabó, Z.: Monopoles and lens space surgeries. Annals Math. (2) 165(2), 457–546 (2007) Kazez, W.H., Roberts, R.: Approximating C 0 foliations. In press (2014) Kitano, T., Suzuki, M.: A partial order in the knot table. Experiment. Math. 14(4), 385–390 (2005) Kitano, T., Suzuki, M.: A partial order in the knot table II. Acta Math. Sin. (Engl. Ser.) 24(11), 1801–1816 (2008) Levine, A.S., Lewallen, S.: Strong L-spaces and left-orderability. Math. Res. Lett. 19, 2012 Lipshitz, R., Ozsváth, P., Thurston, D.: Bordered Heegaard Floer homology: Invariance and pairing. arXiv:0810.0687 (2008) Li, T., Roberts, R.: Taut foliations in knot complements. arXiv:1211.3066 (2012) Lisca, P., Stipsicz, A.I.: Ozsváth-Szabó invariants and tight contact 3-manifolds. III. J. Symplectic Geom. 5(4), 357–384 (2007) Morgan, J.W., Bass, H.: The Smith conjecture. Pure and applied mathematics Papers presented at the symposium held at Columbia University, Vol. 112. Academic, New York (1979) Minkus, J.: The branched cyclic coverings of 2 bridge knots and links. Mem. Am. Math. Soc. 35(255), iv+68 (1982) Meeks, W.I., Simon, L., Yau, S.T.: Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature. Annals of Math. (2) 116(3), 621–659 (1982) Mulazzani, M., Vesnin, A.: The many faces of cyclic branched coverings of 2-bridge knots and links. Atti Sem. Mat. Fis. Univ. Modena. 49 suppl., 177–215 (2001). Dedicated to the memory of Professor M. Pezzana (Italian) Naimi, R.: Foliations transverse to fibers of Seifert manifolds. Comment. Math. Helv. 69(1), 155–162 (1994) Núñez, V., Ramir’ez-Losada, E.: The trefoil knot is as universal as it can be. Topol. Appl. 130(1), 1–17 (2003) Ozsváth, P., Szabó, Z.: Holomorphic disks and genus bounds. Geom. Topol. 8, 311–334 (2004) Ozsváth, P., Szabó, Z.: On knot Floer homology and lens space surgeries. Topology 44(6), 1281–1300 (2005) Ozsváth, P., Szabó, Z.: On the Heegaard Floer homology of branched double-covers. Adv. Math. 194(1), 1–33 (2005) Patton, R. M.: Incompressible punctured tori in the complements of alternating knots. Math. Ann. 301(1), 1–22 (1995) Peters, T.: On L-spaces and non left-orderable 3-manifold groups. arXiv:0903.4495 (2009) Roberts, R.: Constructing taut foliations. Comment. Math. Helv. 70(4), 516–545 (1995) Roberts, R.: Taut foliations in punctured surface bundles. I. Proc. Lond. Math. Soc.(3) 82(3), 747–768 (2001) Roberts, R.: Taut foliations in punctured surface bundles. II. Proc. London Math. Soc. (3) 83(2), 443–471 (2001) Teragaito, M.: Cyclic branched covers of alternating knots and L-spaces. arXiv:1404.6892 (2014) Teragaito, M.: Four-fold cyclic branched covers of genus one two-bridge knots are L-spaces To appear in Bol. Soc. Mat. Mexicana (2014) Tran, A.T.: On left-orderability and cyclic branched coverings. arXiv:1311.4262 (2013) Trotter, H.F.: Non-invertible knots exist. Topology 2, 275–280 (1963)