Tauberian Conditions under Which Convergence of Integrals Follows from Summability (C, 1) over R+

Analysis Mathematica - Tập 26 Số 1 - Trang 53-61 - 2000
Móricz, Ferenc1, Németh, Zoltán1
1Bolyai Institute, University of Szeged, Szeged, Hungary e-mail

Tóm tắt

Given f ∈ L loc 1 (R +), we define $$s\left( t \right): = \int\limits_0^t {f\left( x \right)} {\text{ }}dx{\text{ and }}\sigma \left( t \right):\frac{1}{t}{\text{ }}\int\limits_0^t {s\left( u \right)} {\text{ }}du{\text{ for }}t >0$$ Our permanent assumption is that σ(t) → A as t → ∞, where A is a finite number. First, we consider real-valued functions, and prove that s(t) → A as t → ∞ if and only if two one-sided Tauberian conditions are satisfied. In particular, these two conditions are satisfied if s(t) is slowly decreasing (or increasing) in the sense of R. Schmidt; in particular, if f(x) obeys a Landau type one-sided Tauberian condition. Second, we extend these results for complex-valued functions by giving a two-sided Tauberian condition, being necessary and sufficient in order that σ(t) → A imply s(t) → A as t → ∞. In particular, this condition is satisfied if s(t) is slowly oscillating; in particular if f(x) obeys a Landau type two-sided Tauberian condition.

Tài liệu tham khảo

G. H. Hardy, Divergent series, Clarendon Press (Oxford, 1949). citation_journal_title=Prace Mat.-Fiz.; citation_title=Ñber die Bedeutung einiger neuerer Grenzwertsätze der Herren Hardy und Axer; citation_author=E. Landau; citation_volume=21; citation_publication_date=1910; citation_pages=97-177; citation_id=CR2 citation_journal_title=Bull. London Math. Soc.; citation_title=Necessary and sufficient Tauberian conditions, under which convergence follows from summability (C, 1); citation_author=F. MÓricz; citation_volume=26; citation_publication_date=1994; citation_pages=288-294; citation_id=CR3 citation_journal_title=Math. Z.; citation_title=Ñber divergente Folgen und lineare Mittelbindungen; citation_author=R. Schmidt; citation_volume=22; citation_publication_date=1925; citation_pages=89-152; citation_id=CR4 E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press (Oxford, 1937).