Tau phosphorylation in neuronal cell function and dysfunction
Tóm tắt
Tau is a group of neuronal microtubule-associated proteins that are formed by alternative mRNA splicing and accumulate in neurofibrillary tangles in Alzheimer's disease (AD) brain. Tau plays a key role in regulating microtubule dynamics, axonal transport and neurite outgrowth, and all these functions of tau are modulated by site-specific phosphorylation. There is significant evidence that a disruption of normal phosphorylation events results in tau dysfunction in neurodegenerative diseases, such as AD, and is a contributing factor to the pathogenic processes. Indeed, the abnormal tau phosphorylation that occurs in neurodegenerative conditions not only results in a toxic loss of function (e.g. decreased microtubule binding) but probably also a toxic gain of function (e.g. increased tau-tau interactions). Although tau is phosphorylated in vitro by numerous protein kinases, how many of these actually phosphorylate tau in vivo is unclear. Identification of the protein kinases that phosphorylate tau in vivo in both physiological and pathological processes could provide potential therapeutic targets for the treatment of AD and other neurodegenerative diseases in which there is tau pathology.
Từ khóa
Tài liệu tham khảo
Abraha, A., Ghoshal, N., Gamblin, T. C., Cryns, V., Berry, R. W., Kuret, J. and Binder, L. I. (2000). C-terminal inhibition of tau assembly in vitro and in Alzheimer's disease. J. Cell Sci.113, 3737-3745.
Agarwal-Mawal, A. and Paudel, H. K. (2001). Neuronal Cdc2-like protein kinase (Cdk5/p25) is associated with protein phosphatase 1 and phosphorylates inhibitor-2. J. Biol. Chem.276, 23712-23718.
Ahlijanian, M. K., Barrezueta, N. X., Williams, R. D., Jakowski, A., Kowsz, K. P., McCarthy, S., Coskran, T., Carlo, A., Seymour, P. A., Burkhardt, J. E. et al. (2000). Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc. Natl. Acad. Sci. USA97, 2910-2915.
Alonso, A. C., Grundke-Iqbal, I. and Iqbal, K. (1996). Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med.2, 783-787.
Anderton, B. H., Betts, J., Blackstock, W. P., Brion, J. P., Chapman, S., Connell, J., Dayanandan, R., Gallo, J. M., Gibb, G., Hanger, D. P. et al. (2001). Sites of phosphorylation in tau and factors affecting their regulation. Biochem. Soc. Symp.67, 73-80.
Augustinack, J. C., Schneider, A., Mandelkow, E. M. and Hyman, B. T. (2002). Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathol.103, 26-35.
Avila, J., Lucas, J. J., Perez, M. and Hernandez, F. (2004). Role of tau protein in both physiological and pathological conditions. Physiol. Rev.84, 361-384.
Bibb, J. A., Nishi, A., O'Callaghan, J. P., Ule, J., Lan, M., Snyder, G. L., Horiuchi, A., Saito, T., Hisanaga, S., Czernik, A. J. et al. (2001). Phosphorylation of protein phosphatase inhibitor-1 by Cdk5. J. Biol. Chem.276, 14490-14497.
Biernat, J. and Mandelkow, E. M. (1999). The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol. Biol. Cell10, 727-740.
Biernat, J., Gustke, N., Drewes, G., Mandelkow, E. M. and Mandelkow, E. (1993). Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron11, 153-163.
Biernat, J., Wu, Y. Z., Timm, T., Zheng-Fischhofer, Q., Mandelkow, E., Meijer, L. and Mandelkow, E. M. (2002). Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol. Biol. Cell13, 4013-4028.
Brandt, R., Leger, J. and Lee, G. (1995). Interaction of tau with the neural plasma membrane mediated by tau's amino terminal projection domain. J. Cell Biol.131, 1327-1340.
Brion, J. P., Octave, J. N. and Couck, A. M. (1994). Distribution of the phosphorylated microtubule-associated protein tau in developing cortical neurons. Neuroscience63, 895-909.
Busciglio, J., Lorenzo, A., Yeh, J. and Yankner, B. A. (1995). beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron14, 879-888.
Caceres, A. and Kosik, K. S. (1990). Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature343, 461-463.
Caceres, A., Potrebic, S. and Kosik, K. S. (1991). The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J. Neurosci.11, 1515-1523.
Chin, J. Y., Knowles, R. B., Schneider, A., Drewes, G., Mandelkow, E. M. and Hyman, B. T. (2000). Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study. J. Neuropathol. Exp. Neurol.59, 966-971.
Cho, J. H. and Johnson, G. V. (2003). Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J. Biol. Chem.278, 187-193.
Cho, J. H. and Johnson, G. V. (2004). Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J. Neurochem.88, 349-358.
Cleveland, D. W., Hwo, S. Y. and Kirschner, M. W. (1977). Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol.116, 227-247.
Cole, A., Frame, S. and Cohen, P. (2004). Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem. J.377, 249-255.
Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H. and Tsai, L. H. (2003). Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron40, 471-483.
Dawson, H. N., Ferreira, A., Eyster, M. V., Ghoshal, N., Binder, L. I. and Vitek, M. P. (2001). Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci.114, 1179-1187.
Doble, B. W. and Woodgett, J. R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci.116, 1175-1186.
Drewes, G., Trinczek, B., Illenberger, S., Biernat, J., Schmitt-Ulms, G., Meyer, H. E., Mandelkow, E. M. and Mandelkow, E. (1995). Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem.270, 7679-7688.
Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. and Mandelkow, E. (1997). MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell89, 297-308.
Ebneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B. and Mandelkow, E. (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol.143, 777-794.
Fath, T., Eidenmuller, J. and Brandt, R. (2002). Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J. Neurosci.22, 9733-9741.
Ferrari, A., Hoerndli, F., Baechi, T., Nitsch, R. M. and Gotz, J. (2003). beta-Amyloid induces paired helical filament-like tau filaments in tissue culture. J. Biol. Chem.278, 40162-40168.
Fleming, L. M. and Johnson, G. V. (1995). Modulation of the phosphorylation state of tau in situ: the roles of calcium and cyclic AMP. Biochem. J.309, 41-47.
Gamblin, T. C., Chen, F., Zambrano, A., Abraha, A., Lagalwar, S., Guillozet, A. L., Lu, M., Fu, Y., Garcia-Sierra, F., LaPointe, N. et al. (2003). Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc. Natl. Acad. Sci. USA100, 10032-10037.
Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. and Crowther, R. A. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron3, 519-526.
Goedert, M., Jakes, R., Crowther, R. A., Cohen, P., Vanmechelen, E., Vandermeeren, M. and Cras, P. (1994). Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer's disease: identification of phosphorylation sites in tau protein. Biochem. J.301, 871-877.
Gong, C. X., Grundke-Iqbal, I., Damuni, Z. and Iqbal, K. (1994). Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Lett.341, 94-98.
Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S. and Wisniewski, H. M. (1986a). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem.261, 6084-6089.
Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M. and Binder, L. I. (1986b). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA83, 4913-4917.
Haase, C., Stieler, J. T., Arendt, T. and Holzer, M. (2004). Pseudophosphorylation of tau protein alters its ability for self-aggregation. J. Neurochem.88, 1509-1520.
Hallows, J. L., Chen, K., DePinho, R. A. and Vincent, I. (2003). Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J. Neurosci.23, 10633-10644.
Hamdane, M., Sambo, A. V., Delobel, P., Begard, S., Violleau, A., Delacourte, A., Bertrand, P., Benavides, J. and Buee, L. (2003). Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex. J. Biol. Chem.278, 34026-34034.
Harada, A., Oguchi, K., Okabe, S., Kuno, J., Terada, S., Ohshima, T., Sato-Yoshitake, R., Takei, Y., Noda, T. and Hirokawa, N. (1994). Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature369, 488-491.
Hasegawa, M., Jakes, R., Crowther, R. A., Lee, V. M., Ihara, Y. and Goedert, M. (1996). Characterization of mAb AP422, a novel phosphorylation-dependent monoclonal antibody against tau protein. FEBS Lett.384, 25-30.
Hashiguchi, M., Saito, T., Hisanaga, S. and Hashiguchi, T. (2002). Truncation of CDK5 activator p35 induces intensive phosphorylation of Ser202/Thr205 of human tau. J. Biol. Chem.277, 44525-44530.
Hong, M., Chen, D. C., Klein, P. S. and Lee, V. M. (1997). Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J. Biol. Chem.272, 25326-25332.
Huang, K. X. and Paudel, H. K. (2000). Ser67-phosphorylated inhibitor 1 is a potent protein phosphatase 1 inhibitor. Proc. Natl. Acad. Sci. USA97, 5824-5829.
Hughes, K., Nikolakaki, E., Plyte, S. E., Totty, N. F. and Woodgett, J. R. (1993). Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J.12, 803-808.
Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S., Chakraverty, S., Isaacs, A., Grover, A. et al. (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature393, 702-705.
Iqbal, K., Grundke-Iqbal, I., Zaidi, T., Merz, P. A., Wen, G. Y., Shaikh, S. S., Wisniewski, H. M., Alafuzoff, I. and Winblad, B. (1986). Defective brain microtubule assembly in Alzheimer's disease. Lancet2, 421-426.
Iqbal, K., Alonso-Adel, C., El-Akkad, E., Gong, C. X., Haque, N., Khatoon, S., Pei, J. J., Tsujio, I., Wang, J. Z. and Grundke-Iqbal, I. (2002). Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion. J. Mol. Neurosci.19, 95-99.
Ishiguro, K., Shiratsuchi, A., Sato, S., Omori, A., Arioka, M., Kobayashi, S., Uchida, T. and Imahori, K. (1993). Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett.325, 167-172.
Ishihara, T., Hong, M., Zhang, B., Nakagawa, Y., Lee, M. K., Trojanowski, J. Q. and Lee, V. M. (1999). Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron24, 751-762.
Jameson, L., Frey, T., Zeeberg, B., Dalldorf, F. and Caplow, M. (1980). Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry19, 2472-2479.
Johnson, G. V. and Jenkins, S. M. (1999). Tau protein in normal and Alzheimer's disease brain. J. Alzheimers Dis.1, 307-328.
Jope, R. S. (2003). Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol. Sci.24, 441-443.
Jope, R. S. and Johnson, G. V. (2004). The glamour and gloom of glycogen synthase kinase 3 (GSK3). Trends Biol. Sci.29, 95-102.
Kerokoski, P., Suuronen, T., Salminen, A., Soininen, H. and Pirttila, T. (2002). Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation. Biochem. Biophys. Res. Commun.298, 693-698.
Kosik, K. S., Joachim, C. L. and Selkoe, D. J. (1986). Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA83, 4044-4048.
Kosik, K. S., Orecchio, L. D., Bakalis, S. and Neve, R. L. (1989). Developmentally regulated expression of specific tau sequences. Neuron2, 1389-1397.
Kusakawa, G., Saito, T., Onuki, R., Ishiguro, K., Kishimoto, T. and Hisanaga, S. (2000). Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J. Biol. Chem.275, 17166-17172.
Lee, V. M., Goedert, M. and Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annu. Rev. Neurosci.24, 1121-1159.
Leroy, K. and Brion, J. P. (1999). Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J. Chem. Neuroanat.16, 279-293.
Liao, H., Li, Y., Brautigan, D. L. and Gundersen, G. G. (1998). Protein phosphatase 1 is targeted to microtubules by the microtubule-associated protein Tau. J. Biol. Chem.273, 21901-21908.
Lindwall, G. and Cole, R. D. (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem.259, 5301-5305.
Litersky, J. M., Johnson, G. V., Jakes, R., Goedert, M., Lee, M. and Seubert, P. (1996). Tau protein is phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II within its microtubule-binding domains at Ser-262 and Ser-356. Biochem. J.316, 655-660.
Liu, F., Iqbal, K., Grundke-Iqbal, I. and Gong, C. X. (2002). Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. FEBS Lett.530, 209-214.
Lovestone, S., Hartley, C. L., Pearce, J. and Anderton, B. H. (1996). Phosphorylation of tau by glycogen synthase kinase-3beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience73, 1145-1157.
Lovestone, S., Davis, D. R., Webster, M. T., Kaech, S., Brion, J. P., Matus, A. and Anderton, B. H. (1999). Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol. Psychiatry45, 995-1003.
Lu, Q. and Wood, J. G. (1993). Functional studies of Alzheimer's disease tau protein. J. Neurosci.13, 508-515.
Lucas, J. J., Hernandez, F., Gomez-Ramos, P., Moran, M. A., Hen, R. and Avila, J. (2001). Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J.20, 27-39.
Lund, E. T., McKenna, R., Evans, D. B., Sharma, S. K. and Mathews, W. R. (2001). Characterization of the in vitro phosphorylation of human tau by tau protein kinase II (cdk5/p20) using mass spectrometry. J. Neurochem.76, 1221-1232.
Mandelkow, E. M., Stamer, K., Vogel, R., Thies, E. and Mandelkow, E. (2003). Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging24, 1079-1085.
Mandelkow, E. M., Thies, E., Trinczek, B., Biernat, J. and Mandelkow, E. (2004). MARK/PAR-1 kinase is a regulator of microtubule dependent transport in axons. J. Cell Biol.167, 99-110.
Mandell, J. W. and Banker, G. A. (1996). A spatial gradient of tau protein phosphorylation in nascent axons. J. Neurosci.16, 5727-5740.
Morfini, G., Szebenyi, G., Brown, H., Pant, H. C., Pigino, G., DeBoer, S., Beffert, U. and Brady, S. T. (2004). A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J.23, 2235-2245.
Nishimura, I., Yang, Y. and Lu, B. (2004). PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila.Cell116, 671-682.
Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor, K., LaFrancois, J., Wang, L., Kondo, T. et al. (2003). Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron38, 555-565.
Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y. and LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron39, 409-421.
Patrick, G. N., Zhou, P., Kwon, Y. T., Howley, P. M. and Tsai, L. H. (1998). p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J. Biol. Chem.273, 24057-24064.
Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P. and Tsai, L. H. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature402, 615-622.
Patzke, H. and Tsai, L. H. (2002). Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J. Biol. Chem.277, 8054-8060.
Perez, M., Hernandez, F., Lim, F., Diaz-Nido, J. and Avila, J. (2003). Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J. Alzheimers Dis.5, 301-308.
Phiel, C. J., Wilson, C. A., Lee, V. M. and Klein, P. S. (2003). GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature423, 435-439.
Poorkaj, P., Bird, T. D., Wijsman, E., Nemens, E., Garruto, R. M., Anderson, L., Andreadis, A., Wiederholt, W. C., Raskind, M. and Schellenberg, G. D. (1998). Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol.43, 815-825.
Probst, A., Gotz, J., Wiederhold, K. H., Tolnay, M., Mistl, C., Jaton, A. L., Hong, M., Ishihara, T., Lee, V. M., Trojanowski, J. Q. et al. (2000). Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol.99, 469-481.
Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P. and Ferreira, A. (2002). Tau is essential to beta-amyloid-induced neurotoxicity. Proc. Natl. Acad. Sci. USA99, 6364-6369.
Rohn, T. T., Rissman, R. A., Davis, M. C., Kim, Y. E., Cotman, C. W. and Head, E. (2002). Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol. Dis.11, 341-354.
Sayas, C. L., Avila, J. and Wandosell, F. (2002). Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim. Biophys. Acta1582, 144-153.
Schneider, A., Biernat, J., von Bergen, M., Mandelkow, E. and Mandelkow, E. M. (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry38, 3549-3558.
Scott, C. W., Spreen, R. C., Herman, J. L., Chow, F. P., Davison, M. D., Young, J. and Caputo, C. B. (1993). Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly. J. Biol. Chem.268, 1166-1173.
Seitz, A., Kojima, H., Oiwa, K., Mandelkow, E. M., Song, Y. H. and Mandelkow, E. (2002). Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J.21, 4896-4905.
Seubert, P., Mawal-Dewan, M., Barbour, R., Jakes, R., Goedert, M., Johnson, G. V., Litersky, J. M., Schenk, D., Lieberburg, I., Trojanowski, J. Q. et al. (1995). Detection of phosphorylated Ser262 in fetal tau, adult tau, and paired helical filament tau. J. Biol. Chem.270, 18917-18922.
Shahani, N. and Brandt, R. (2002). Functions and malfunctions of the tau proteins. Cell. Mol. Life Sci.59, 1668-1680.
Shelton, S. B. and Johnson, G. V. (2004). Cyclin-dependent kinase-5 in neurodegeneration. J. Neurochem.88, 1313-1326.
Shelton, S. B., Krishnamurthy, P. and Johnson, G. V. (2004). Effects of cyclin-dependent kinase-5 activity on apoptosis and tau phosphorylation in immortalized mouse brain cortical cells. J. Neurosci. Res.76, 110-120.
Sironi, J. J., Yen, S. H., Gondal, J. A., Wu, Q., Grundke-Iqbal, I. and Iqbal, K. (1998). Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK. FEBS Lett.436, 471-475.
Smith, D. S., Greer, P. L. and Tsai, L. H. (2001). Cdk5 on the brain. Cell Growth Differ.12, 277-283.
Spillantini, M. G., Murrell, J. R., Goedert, M., Farlow, M. R., Klug, A. and Ghetti, B. (1998). Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl. Acad. Sci. USA95, 7737-7741.
Spittaels, K., van den Haute, C., van Dorpe, J., Bruynseels, K., Vandezande, K., Laenen, I., Geerts, H., Mercken, M., Sciot, R., van Lommel, A. et al. (1999). Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am. J. Pathol.155, 2153-2165.
Spittaels, K., van den Haute, C., van Dorpe, J., Geerts, H., Mercken, M., Bruynseels, K., Lasrado, R., Vandezande, K., Laenen, I., Boon, T. et al. (2000). Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J. Biol. Chem.275, 41340-41349.
Stambolic, V., Ruel, L. and Woodgett, J. R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol.6, 1664-1668.
Stamer, K., Vogel, R., Thies, E., Mandelkow, E. and Mandelkow, E. M. (2002). Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol.156, 1051-1063.
Stoothoff, W. H. and Johnson, G. V. (2004). Tau phosphorylation: physiological and pathological consequences. Biochim. Biophys. Acta (in press).
Su, Y., Ryder, J., Li, B., Wu, X., Fox, N., Solenberg, P., Brune, K., Paul, S., Zhou, Y., Liu, F. et al. (2004). Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry43, 6899-6908.
Sutherland, C., Leighton, I. A. and Cohen, P. (1993). Inactivation of glycogen synthase kinase-3beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J.296, 15-19.
Takashima, A., Noguchi, K., Sato, K., Hoshino, T. and Imahori, K. (1993). Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc. Natl. Acad. Sci. USA90, 7789-7793.
Takashima, A., Noguchi, K., Michel, G., Mercken, M., Hoshi, M., Ishiguro, K. and Imahori, K. (1996). Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3beta. Neurosci. Lett.203, 33-36.
Takei, Y., Teng, J., Harada, A. and Hirokawa, N. (2000). Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J. Cell Biol.150, 989-1000.
Tatebayashi, Y., Haque, N., Tung, Y. C., Iqbal, K. and Grundke-Iqbal, I. (2004). Role of tau phosphorylation by glycogen synthase kinase-3beta in the regulation of organelle transport. J. Cell Sci.117, 1653-1663.
Van den Haute, C., Spittaels, K., van Dorpe, J., Lasrado, R., Vandezande, K., Laenen, I., Geerts, H. and van Leuven, F. (2001). Coexpression of human cdk5 and its activator p35 with human protein tau in neurons in brain of triple transgenic mice. Neurobiol. Dis.8, 32-44.
Wagner, U., Utton, M., Gallo, J. M. and Miller, C. C. (1996). Cellular phosphorylation of tau by GSK-3beta influences tau binding to microtubules and microtubule organisation. J. Cell Sci.109, 1537-1543.
Watanabe, A., Hasegawa, M., Suzuki, M., Takio, K., Morishima-Kawashima, M., Titani, K., Arai, T., Kosik, K. S. and Ihara, Y. (1993). In vivo phosphorylation sites in fetal and adult rat tau. J. Biol. Chem.268, 25712-25717.
Weingarten, M. D., Lockwood, A. H., Hwo, S. Y. and Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA72, 1858-1862.
Wood, J. G., Mirra, S. S., Pollock, N. J. and Binder, L. I. (1986). Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl. Acad. Sci. USA83, 4040-4043.
Woodgett, J. R. (1990). Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J.9, 2431-2438.