Tate Resolutions for Products of Projective Spaces

Acta Mathematica Vietnamica - Tập 40 - Trang 5-36 - 2015
David Eisenbud1, Daniel Erman2, Frank-Olaf Schreyer3
1Department of Mathematics, University of California, Berkeley, USA
2Department of Mathematics, University of Wisconsin, Madison, USA
3Mathematik und Informatik, Universität des Saarlandes, Saarbrücken, Germany

Tóm tắt

We describe the Tate resolution of a coherent sheaf or complex of coherent sheaves on a product of projective spaces. Such a resolution makes explicit all the cohomology of all twists of the sheaf, including, for example, the multigraded module of twisted global sections, and also the Beilinson monads of all twists. Although the Tate resolution is highly infinite, any finite number of components can be computed efficiently, starting either from a Beilinson monad or from a multigraded module.

Tài liệu tham khảo

Beı̆linson, A.A.: Coherent sheaves on P n and problems in linear algebra. Funktsional. Anal. i Prilozhen. 12(3), 68–69 (Russian) (1978) Bernšteı̆n, I.N., Gel ∼fand, I.M., Gel ∼fand, S.I.: Algebraic vector bundles on P n and problems of linear algebra. Funktsional. Anal. i Prilozhen. 12(3), 66–67 (Russian) (1978) Cartan, H., Eilenberg, S.: Homological algebra, Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1999). With an appendix by David A. Buchsbaum; Reprint of the 1956 original Costa, L., Di Rocco, S., Miró-Roig, R.M.: Derived category of fibrations. Math. Res. Lett. 18(3), 425–432 (2011) Costa, L., Miró-Roig, R.M.: Tilting sheaves on toric varieties. Math. Z. 248 (4), 849–865 (2004) Cox, D.A.: The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4(1), 17–50 (1995) Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011) Eisenbud, D.: Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995) Eisenbud, D., Schreyer, F.-O.: Betti numbers of graded modules and cohomology of vector bundles. J. Am. Math. Soc. 22(3), 859–888 (2009) Eisenbud, D., Schreyer, F.-O.: Cohomology of coherent sheaves and series of supernatural bundles. J. Eur. Math. Soc. (JEMS) 12(3), 703–722 (2010) Eisenbud, D., Schreyer, F.-O., Weyman, J.: Resultants and Chow forms via exterior syzygies. J. Am. Math. Soc. 16(3), 537–579 (2003) Eisenbud, D., Floystad, G., Schreyer, F.-O.: Sheaf cohomology and free resolutions over exterior algebras. Trans. Am. Math. Soc. 355(11), 4397–4426 (electronic) (2003) Eisenbud, D., Schreyer, F.-O.: The banks of the cohomology river. Kyoto J. Math. 53(1), 131–144 (2013) Eisenbud, D., Erman, D., Schreyer, F.-O.: TateOnProducts, package for Macaulay2. Available at, http://www.math.uni-sb.de/ag-schreyer/home/computeralgebra Gelfand, S.I., Manin, Y.I.: Methods of homological algebra, 2nd ed., Springer Monographs in Mathematics. Springer-Verlag, Berlin (2003) Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at, http://www.math.uiuc.edu/Macaulay2/ Horrocks, G.: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc. 14(3), 689–713 (1964) Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006) Kapranov, M.M.: On the derived categories of coherent sheaves on some homogeneous spaces. Invent. Math. 92(3), 479–508 (1988) Maclagan, D., Smith, G.G.: Multigraded Castelnuovo-Mumford regularity. J. Reine Angew. Math. 571, 179–212 (2004) Okonek, C., Schneider, M., Spindler, H.: 2011: Vector bundles on complex projective spaces, Modern Birkhäuser Classics. Birkhäuser/Springer, Basel. Corrected reprint of the 1988 edition; With an appendix by S. I. Gelfand