Tate Cohomology for Complexes with Finite Gorenstein AC-Injective Dimension
Tóm tắt
Từ khóa
Tài liệu tham khảo
Asadollahi, J., Salarian, S.: Cohomology theories based on Gorenstein injective modules. Trans. Am. Math. Soc. 358, 2183–2203 (2005)
Asadollahi, J., Salarian, S.: Gorenstein injective dimension for complexes and Iwanaga-Gorenstein rings. Commun. Algebra 34, 3009–3022 (2006)
Avramov, L.L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71, 129–155 (1991)
Avramov, L.L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc. 85, 393–440 (2002)
Bravo, D., Gillespie, J., Hovey, M.: The stable module category of a general ring, arXiv:1405.5768 (2014)
Cartan, H., Eilenberg, S.: Homological algebra. Princeton Univ. Press, Princeton (1956)
Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions-a functorial description with applications. J. Algebra 302, 231–279 (2006)
Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220(4), 611–633 (1995)
Gao, Z., Zhao, T.: Foxby equivalence relative to $$C$$ C -weak injective and $$C$$ C -weak flat modules. J. Korean Math. Soc. 54(5), 1457–1482 (2017)
Gillespie, J.: The flat model structure on Ch $$(R)$$ ( R ) . Trans. Am. Math. Soc. 356, 3369–3390 (2004)
Gillespie, J.: Model structures on modules over Ding-Chen rings. Homol. Homotopy Appl. 12(1), 61–73 (2010)
Hu, J., Ding, N.: A model structure approach to the Tate-Vogel cohomology. J. Pure Appl. Algebra 220(6), 2240–2264 (2016)
Salce, L.: Cotorsion theories for abelian groups. Symposia Math. 23, 11–32 (1979)
Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules. J. Algeba 324, 2336–2368 (2010)
Spaltenstein, N.: Resolutions of unbounded complexes. Compositio Math. 65, 121–154 (1988)
Veliche, O.: Gorenstein projective dimension for complexes. Trans. Am. Math. Soc. 358, 1257–1283 (2006)
Wang, Z., Liu, Z.: Strongly Gorenstein flat dimensions of complexes. Commun. Algebra 44, 1390–1410 (2016)
Yang, G., Liu, Z.: Cotorsion pairs and model structures on Ch( $$R$$ R ). Proc. Edinb. Math. Soc. 54, 783–797 (2012)