Task selection in spatial crowdsourcing from worker’s perspective

Springer Science and Business Media LLC - Tập 20 Số 3 - Trang 529-568 - 2016
Dingxiong Deng1, Cyrus Shahabi1, Ugur Demiryurek1, Linhong Zhu2
1Computer Science Department, University of Southern California, Los Angeles, USA
2Information Sciences Institute, University of Southern California, Marina del Rey, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gowalla dataset. http://snap.stanford.edu/data/loc-gowalla.html

Yelp dataset. http://www.yelp.com/dataset_challenge/

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. VLDB ’94. San Francisco, pp 487–499. http://dl.acm.org/citation.cfm?id=645920.672836

Alfarrarjeh A, Emrich T, Shahabi C (2014) Scalable spatial crowdsourcing: A study of distributed algorithms. MDM ’15

Alt F, Shirazi AS, Schmidt A, Kramer U, Nawaz Z (2010) Location-based crowdsourcing: extending crowdsourcing to the real world. NordiCHI ’10. NY, pp 13–22. doi: 10.1145/1868914.1868921

Bozzon A, Brambilla M, Ceri S, Mazza D (2013) Exploratory search framework for web data sources. VLDB J 22(5):641–663

Bulut M, Yilmaz Y, Demirbas M (2011) Crowdsourcing location-based queries. In: PERCOM workshops. doi: 10.1109/PERCOMW.2011.5766944 , pp 513–518

Chen C, Cheng SF, Gunawan A, Misra A, Dasgupta K, Chander D (2014) Traccs: a framework for trajectory-aware coordinated urban crowd-sourcing. In: 2nd AAAI conference on human computation and crowdsourcing

Chen C, Cheng SF, Misra A, Lau HC (2015) Multi-agent task assignment for mobile crowdsourcing under trajectory uncertainties. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15. http://dl.acm.org/citation.cfm?id=2772879.2773400 . International Foundation for Autonomous Agents and Multiagent Systems, Richland, pp 1715–1716

Chen Z, Fu R, Zhao Z, Liu Z, Xia L, Chen L, Cheng P, Cao CC, Tong Y, Zhang CJ (2014) gmission: A general spatial crowdsourcing platform. PVLDB

Dabrowski JR, Munson EV (2001) Is 100 milliseconds too fast?. In: CHI ’01 extended abstracts on human factors in computing systems, CHI EA ’01, pp 317–318

Demartini G, Difallah DE, Cudré-Mauroux P (2013) Large-scale linked data integration using probabilistic reasoning and crowdsourcing. VLDB J 22(5):665–687

Deng D, Shahabi C, Demiryurek U (2013) Maximizing the number of worker’s self-selected tasks in spatial crowdsourcing. In: SIGSPATIAL’13. doi: 10.1145/2525314.2525370 , pp 314–323

Deng D, Shahabi C, Zhu L (2015) Task matching and scheduling for multiple workers in spatial crowdsourcing. In: SIGSPATIAL’15. doi: 10.1145/2525314.2525370

Doan A, Ramakrishnan R, Halevy AY (2011) Crowdsourcing systems on the world-wide web. Commun ACM 54(4):86–96

Franklin MJ, Kossmann D, Kraska T, Ramesh S, Xin R (2011) Crowddb: answering queries with crowdsourcing. SIGMOD ’11. NY, pp 61–72

Grady C, Lease M (2010) Crowdsourcing document relevance assessment with mechanical turk. NAACL HLT ’10. PA, pp 172–179

Guo S, Parameswaran A, Garcia-Molina H (2012) So who won?: dynamic max discovery with the crowd. SIGMOD ’12. NY, pp 385–396

Hull B, Bychkovsky V, Zhang Y, Chen K, Goraczko M, Miu A, Shih E, Balakrishnan H, Madden S (2006) Cartel: a distributed mobile sensor computing system. SenSys ’06. NY, pp 125–138. doi: 10.1145/1182807.1182821

Kantor MG, Rosenwein MB (1992) The orienteering problem with time windows. J Oper Res Soc 629–635

Kazemi L, Shahabi C A privacy-aware framework for participatory sensing. SIGKDD Explor ’11 13(1):43–51

Kazemi L, Shahabi C (2012) Geocrowd: enabling query answering with spatial crowdsourcing. In: SIGSPATIAL ’12. doi: 10.1145/2424321.2424346 . NY, pp 189–198

Kazemi L, Shahabi C, Chen L (2013) Geotrucrowd: Trustworthy query answering with spatial crowdsourcing. In: SIGSPATIAL’13, pp 304–313

Layla Pournajaf LX, Sunderam V (2014) Dynamic data driven crowd sensing task assignment. Proc Comput Sci 29:1314–1323. doi: 10.1016/j.procs.2014.05.118 . http://www.sciencedirect.com/science/article/pii/S1877050914002956 . 2014 International Conference on Computational Science

Lee SM, Asllani AA (2004) Job scheduling with dual criteria and sequence-dependent setups: mathematical versus genetic programming. Omega 32 (2):145–153. doi: 10.1016/j.omega.2003.10.001 . http://www.sciencedirect.com/science/article/pii/S0305048303001324

Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng SH (2005) On trip planning queries in spatial databases. SSTD’05. Berlin, pp 273–290. doi: 10.1007/11535331_16

Li Y, Deng D, Demiryurek U, Shahabi C, Ravada S (2015) Towards fast and accurate solutions to vehicle routing in a large-scale and dynamic environment. In: SSTD, vol 9239, pp 119–136

Li Y, Yiu ML, Xu W (2015) Oriented online route recommendation for spatial crowdsourcing task workers. In: Advances in spatial and temporal databases. Springer, pp 137–156

Marcus A, Wu E, Madden S, Miller RC (2011) Crowdsourced databases: query processing with people. In: CIDR, pp 211–214

Mohan P, Padmanabhan VN, Ramjee R (2008) Nericell: rich monitoring of road and traffic conditions using mobile smartphones. SenSys ’08. NY, pp 323–336. doi: 10.1145/1460412.1460444

Moore JM (1968) An n job, one machine sequencing algorithm for minimizing the number of late jobs. Manag Sci 15(1):102–109. http://www.jstor.org/stable/2628449

Musthag M, Ganesan D (2013) Labor dynamics in a mobile micro-task market. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 641–650

Pan B, Zheng Y, Wilkie D, Shahabi C (2013) Crowd sensing of traffic anomalies based on human mobility and social media. In: SIGSPATIAL’13. doi: 10.1145/2525314.2525343 , pp 334–343

Papadimitriou CH (1977) The euclidean travelling salesman problem is np-complete. Theor Comput Sci 4(3):237–244. doi: 10.1016/0304-3975(77)90012-3 . http://www.sciencedirect.com/science/article/pii/0304397577900123

Pournajaf L, Xiong L, Sunderam V, Goryczka S (2014) Spatial task assignment for crowd sensing with cloaked locations. In: Proceedings of the 2014 IEEE 15th international conference on mobile data management, MDM ’14. doi: 10.1109/MDM.2014.15 , vol 1. IEEE Computer Society, Washington, DC, pp 73–82

Sharifzadeh M, Kolahdouzan M, Shahabi C (2008) The optimal sequenced route query. VLDB J 17(4):765–787. doi: 10.1007/s00778-006-0038-6

Snow R, O’Connor B, Jurafsky D, Ng AY (2008) Cheap and fast—but is it good?: evaluating non-expert annotations for natural language tasks. EMNLP ’08. PA, pp 254–263

Teodoro R, Ozturk P, Naaman M, Mason W, Lindqvist J (2014) The motivations and experiences of the on-demand mobile workforce. In: Proceedings of the 17th ACM conference on computer supported cooperative work & social computing. ACM, pp 236–247

Terrovitis M, Bakiras S, Papadias D, Mouratidis K (2005) Constrained shortest path computation. In: SSTD’05. doi: 10.1007/11535331_11 , vol 3633, pp 181–199

To H, Ghinita G, Shahabi C (2014) A framework for protecting worker location privacy in spatial crowdsourcing. Proc VLDB Endowment 7(10)

To H, Shahabi C, Kazemi L (2015) A server-assigned spatial crowdsourcing framework. ACM Trans Spatial Algorithms Syst 1(1):2:1–2:28. doi: 10.1145/2729713

Wang Y, Huang Y, Louis C (2013) Towards a framework for privacy-aware mobile crowdsourcing. In: International conference on social computing (SocialCom), 2013. IEEE, pp 454–459

Yan T, Kumar V, Ganesan D (2010) Crowdsearch: exploiting crowds for accurate real-time image search on mobile phones. MobiSys ’10. NY, pp 77–90

Yang K, Zhang K, Ren J, Shen X (2015) Security and privacy in mobile crowdsourcing networks: challenges and opportunities. IEEE Commun Mag 53(8):75–81. doi: 10.1109/MCOM.2015.7180511

Zenonos A, Stein S, Jennings NR (2015) Coordinating measurements for air pollution monitoring in participatory sensing settings. In: Proceedings of the 2015 international conference on autonomous agents and multiagent systems. International Foundation for Autonomous Agents and Multiagent Systems, pp 493–501