Mô hình phân công nhiệm vụ cho sự hợp tác giữa người và robot với tốc độ cobot biến đổi

Journal of Intelligent Manufacturing - Tập 35 Số 2 - Trang 793-806 - 2024
Maurizio Faccio1, Irene Granata1, Riccardo Minto2
1Department of Management and Engineering, University of Padova, Stradella San Nicola 3, Vicenza, Italy
2Department of Industrial Engineering, University of Padova, via Venezia 1, Padova, Italy

Tóm tắt

Tóm tắtCác công nghệ mới, chẳng hạn như robot cộng tác (cobot), là một lựa chọn để cải thiện năng suất và tính linh hoạt trong các hệ thống lắp ráp. Phân công nhiệm vụ là điều cơ bản để phân bổ đúng cách các tài nguyên có sẵn. Tuy nhiên, an toàn thường không được xem xét trong việc phân công nhiệm vụ cho các hệ thống lắp ráp, ngay cả khi điều này là cần thiết để đảm bảo sự an toàn của người vận hành khi họ làm việc với cobot. Do đó, một mô hình xem xét an toàn như một ràng buộc được trình bày ở đây, với mục tiêu vừa tối đa hóa năng suất trong một cụm công việc hợp tác vừa thúc đẩy sự hợp tác an toàn giữa người và robot. Các chỉ số xem xét cả đặc điểm quy trình và sản phẩm được sử dụng để đánh giá chất lượng của mô hình đề xuất, mô hình này cũng được so sánh với một mô hình không có ràng buộc về an toàn. Kết quả xác nhận tính hợp lệ và sự cần thiết của phương pháp mới được đề xuất, mà đảm bảo an toàn cho người vận hành đồng thời cải thiện hiệu suất của hệ thống.

Từ khóa


Tài liệu tham khảo

Azzi, A., Battini, D., Faccio, M., Persona, A.: Sequencing procedure for balancing the workloads variations in case of mixed model assembly system with multiple secondary feeder lines. International Journal of Production Research 50(21), 6081–6098 (2012).

Bautista, J., & Pereira, J. (2007). Ant algorithms for a time and space constrained assembly line balancing problem. European journal of operational research,177(3), 2016–2032.

Bettoni, A., Montini, E., Righi, M., Villani, V., Tsvetanov, R., Borgia, S., Secchi, C., Carpanzano, E.: Mutualistic and adaptive human-machine collaboration based on machine learning in an injection moulding manufacturing line. Procedia CIRP 93, 395–400 (2020).

Bogner, K., Pferschy, U., Unterberger, R., & Zeiner, H. (2018). Optimised scheduling in human-robot collaboration-a use case in the assembly of printed circuit boards. International Journal of Production Research,56(16), 5522–5540.

Boschetti, G., Bottin, M., Faccio, M., Maretto, L., Minto, R.: The influence of collision avoidance strategies on human-robot collaborative systems. IFAC-PapersOnLine 55(2), 301–306 (2022).

Boschetti, G., Bottin, M., Faccio, M., & Minto, R. (2021). Multi-robot multi-operator collaborative assembly systems: a performance evaluation model. Journal of Intelligent Manufacturing,32(5), 1455–1470.

Boschetti, G., Faccio, M., Milanese, M., & Minto, R. (2021). C-alb (collaborative assembly line balancing): a new approach in cobot solutions. The International Journal of Advanced Manufacturing Technology,116(9), 3027–3042.

Browne, J., Dubois, D., Rathmill, K., Sethi, S. P., Stecke, K. E., et al. (1984). Classification of flexible manufacturing systems. The FMS magazine,2(2), 114–117.

Byner, C., Matthias, B., Ding, H.: Dynamic speed and separation monitoring for collaborative robot applications-concepts and performance. Robotics and Computer-Integrated Manufacturing 58, 239–252 (2019).

Chen, F., Sekiyama, K., Cannella, F., Fukuda, T.: Optimal subtask allocation for human and robot collaboration within hybrid assembly system. IEEE Transactions on Automation Science and Engineering 11(4), 1065–1075 (2013).

Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review and research directions. International journal of production economics,72(1), 1–13.

DeGoede, K. M., Ashton-Miller, J. A., Liao, J. M., & Alexander, N. B. (2001). How quickly can healthy adults move their hands to intercept an approaching object? age and gender effects. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences,56(9), M584–M588.

Edmondson, N. & Redford, A. (2002). Generic flexible assembly system design. Assembly automation

El Zaatari, S., Marei, M., Li, W., Usman, Z.: Cobot programming for collaborative industrial tasks: An overview. Robotics and Autonomous Systems 116, 162–180 (2019).

Faccio, M., Bottin, M., & Rosati, G. (2019). Collaborative and traditional robotic assembly: a comparison model. The International Journal of Advanced Manufacturing Technology,102(5), 1355–1372.

Faccio, M., Minto, R., Rosati, G., & Bottin, M. (2020). The influence of the product characteristics on human-robot collaboration: a model for the performance of collaborative robotic assembly. The International Journal of Advanced Manufacturing Technology,106(5), 2317–2331.

Fechter, M., Seeber, C., Chen, S.: Integrated process planning and resource allocation for collaborative robot workplace design. Procedia CIRP 72, 39–44 (2018).

Galin, R., Meshcheryakov, R., Kamesheva, S. & Samoshina, A. (2020). Cobots and the benefits of their implementation in intelligent manufacturing. In: IOP Conference Series: Materials Science and Engineering, vol. 862, p. 032075. IOP Publishing

Gerbers, R., Wegener, K., Dietrich, F. & Dröder, K. (2018). Safe, flexible and productive human-robot-collaboration for disassembly of lithium-ion batteries. In: Recycling of Lithium-Ion Batteries, pp. 99–126. Springer

Gualtieri, L., Rauch, E., Vidoni, R., & Matt, D. T. (2020). Safety, ergonomics and efficiency in human-robot collaborative assembly: design guidelines and requirements. Procedia CIRP,91, 367–372.

Inkulu, A.K., Bahubalendruni, M.R., Dara, A. & SankaranarayanaSamy, K. (2021). Challenges and opportunities in human robot collaboration context of industry 4.0-a state of the art review. Industrial Robot: The international journal of robotics research and application

International Federation of Robotics. (2020). In: IFR Press Conference. https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf

ISO/TS 15066:2016. (2016). Robots and Robotic Devices’ Collaborative Robots. International Organization for Standardization

Johannsmeier, L., & Haddadin, S. (2016). A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Robotics and Automation Letters,2(1), 41–48.

Klumpp, M., Hesenius, M., Meyer, O., Ruiner, C., Gruhn, V.: Production logistics and human-computer interaction-state-of-the-art, challenges and requirements for the future. The International Journal of Advanced Manufacturing Technology 105(9), 3691–3709 (2019).

Krüger, J., Lien, T. K., & Verl, A. (2009). Cooperation of human and machines in assembly lines. CIRP annals,58(2), 628–646.

Liu, H., Wang, L.: Gesture recognition for human-robot collaboration: A review. International Journal of Industrial Ergonomics 68, 355–367 (2018).

Malik, A.A. & Bilberg, A. (2019). Complexity-based task allocation in human-robot collaborative assembly. Industrial Robot: the International Journal of Robotics Research and Application

Marvel, J. A., & Norcross, R. (2017). Implementing speed and separation monitoring in collaborative robot workcells. Robotics and computer-integrated manufacturing,44, 144–155.

Michalos, G., Kousi, N., Karagiannis, P., Gkournelos, C., Dimoulas, K., Koukas, S., Mparis, K., Papavasileiou, A., & Makris, S. (2018). Seamless human robot collaborative assembly-an automotive case study. Mechatronics,55, 194–211.

Michalos, G., Spiliotopoulos, J., Makris, S., & Chryssolouris, G. (2018). A method for planning human robot shared tasks. CIRP journal of manufacturing science and technology,22, 76–90.

Müller, R., Vette, M., Geenen, A.: Skill-based dynamic task allocation in human-robot-cooperation with the example of welding application. Procedia Manufacturing 11, 13–21 (2017).

Nikolakis, N., Kousi, N., Michalos, G., Makris, S.: Dynamic scheduling of shared human-robot manufacturing operations. Procedia CIRP 72, 9–14 (2018).

Palleschi, A., Hamad, M., Abdolshah, S., Garabini, M., Haddadin, S., Pallottino, L.: Fast and safe trajectory planning: Solving the cobot performance/safety trade-off in human-robot shared environments. IEEE Robotics and Automation Letters 6(3), 5445–5452 (2021). DOI: 10.1109/LRA.2021.3076968.

Pearce, M., Mutlu, B., Shah, J., & Radwin, R. (2018). Optimizing makespan and ergonomics in integrating collaborative robots into manufacturing processes. IEEE transactions on automation science and engineering,15(4), 1772–1784.

Ranz, F., Hummel, V., & Sihn, W. (2017). Capability-based task allocation in human-robot collaboration. Procedia Manufacturing, 9, 182–189.

Simões, A.C., Soares, A.L., Barros, A.C.: Factors influencing the intention of managers to adopt collaborative robots (cobots) in manufacturing organizations. Journal of Engineering and Technology Management 57, 101574 (2020).

Surdilovic, D., Schreck, G., & Schmidt, U. (2010). Development of collaborative robots (cobots) for flexible human-integrated assembly automation. In: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–8. VDE

Takata, S., & Hirano, T. (2011). Human and robot allocation method for hybrid assembly systems. CIRP annals,60(1), 9–12.

Tan, J.T.C., Duan, F., Kato, R., Arai, T. & Hall, E. (2010). Collaboration planning by task analysis in human-robot collaborative manufacturing system. INTECH Open Access Publisher

Tsarouchi, P., Matthaiakis, A.S., Makris, S., Chryssolouris, G.: On a human-robot collaboration in an assembly cell. International Journal of Computer Integrated Manufacturing 30(6), 580–589 (2017).

UNI EN ISO 13855: 2010. (2010), Safety of machinery. UNINFO Standards for the Information Technology and related application

UNI EN ISO 10218-1: 2012. (2012). Robots and robotic devices-safety requirements for industrial robots-part 1: Robots. UNINFO Standards for the Information Technology and related applications

UNI EN ISO 10218-2: 2011. (2011). Robots and robotic devices-safety requirements for industrial robots-part 2: Robot systems and integration. UNINFO Standards for the Information Technology and related applications

UNI EN ISO 13855: 2010. (2010). Safety of machinery. UNINFO Standards for the Information Technology and related applications

UNI EN ISO 13855:2010. (2010). Safety of machinery-positioning of safeguards with respect to the approach speeds of parts of the human body. UNINFO Standards for the Information Technology and related applications

Vicentini, F.: Terminology in safety of collaborative robotics. Robotics and Computer-Integrated Manufacturing 63, 101921 (2020).

Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018).