Task-Specific Properties and Prospects of Ionic Liquids in Cross-Coupling Reactions

Springer Science and Business Media LLC - Tập 377 - Trang 1-43 - 2019
Bablee Mandal1, Sujit Ghosh2, Basudeb Basu3,4
1Department of Chemistry, Surya Sen College, Siliguri, Darjeeling, India
2Department of Chemistry, Surendranath Mahavidyalaya, Raiganj, India
3Department of Chemistry, North Bengal University, Darjeeling, India
4Department of Chemistry, Raiganj University, Raiganj, India

Tóm tắt

Ionic liquids (ILs) are considered as highly useful materials for potential diverse uses such as greener and more convenient alternatives to volatile organic solvents, reagents, additives, ligands and co-solvents. Thermal stability, negligible vapor pressure and high polarity with ionic environments have possibly conferred some unique physico-chemical properties and a wider electrochemical window on ILs. More importantly, these properties are tuneable, depending on variations in alkyl chains and counter-anions. On the other hand, various transition-metal-catalyzed cross-coupling reactions constitute an important backbone of contemporary organic synthesis. A vast number of C–C and C-heteroatom cross-coupling reactions are reported in the presence of ILs, often showing better performance. The influence of IL on the action of a given catalyst or on the course of a reaction can be relatively complex, and is not understood well enough to be able to draw succinct conclusions. However, there are a few reports in the literature that help understand the role of actual and active catalytic species stabilized in an IL environment. Stabilization, which can be either helpful or detrimental to catalysis depends on specific circumstances. This review article is aimed primarily at summarizing the various applications of ILs during the past decade, focusing as far as possible on the task-specific properties of ILs in transition-metal-catalyzed C–C and C-heteroatom cross-coupling reactions. Several successful achievements and noteworthy progress in this field of research leads to the sensible conclusion that future prospects in this field of research are not only bright but promise new horizons.

Tài liệu tham khảo

Contugno P, Casiello M, Nacci A, Mastrorilli P, Dell’Anna MM, Monopoli A (2014) J Organomet Chem 752:1–5 Palacio M, Bhusan B (2010) Tribol Lett 40:247–268 Khare V, Ruby C, Sonkaria S, Taubert A (2012) Int J Precis Eng Manuf 13:1207–1213 Dyson JP, Geldbach TJ (2005) Metal catalyzed reactions in ionic liquids. Springer, The Netherlands Favier I, Madec D, Gómez M (2013) Metallic nanoparticles in ionic liquids—Applications in catalysis. In: Serp P, Philippo K (eds) Nanomaterials in catalysis. Wiley, Weinheim Walden P (1914) Bull Acad Imper Sci 8:405–422 Earle MJ, Seddon KP (2000) Pure Appl Chem 72:1391–1398 Newington I, Perez-Arlandis JM, Welton T (2007) Org Lett 19:5247–5250 Welton T (1999) Chem Rev 99:2071–2084 Kunz W, Häckl K (2016) Chem Phy Lett 661:6–12 Vekariya RJ (2017) J Mol Liq 227:44–60 Calò V, Nacci A, Monopoli A, Fornaro A, Sabbatini L, Cioffi N, Ditaranto N (2004) Organometallics 23:5154–5158 Calò V, Nacci A, Monopoli A, Leva E, Cioffi N (2005) Org Lett 7:617–620 Cotugno P, Casiello M, Nacci A, Mastrorilli P, Dell’Anna MM, Monopoli A (2014) J Organomet Chem 752:1–5 Pérez FRF, Schlegel I, Julve M, Anmentano D, Munno GD, Stiriba SE (2013) J Organomet Chem 743:102–108 Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Inorg Chem 21:1263–1264 Wilkes JS, Zaworotko MJ (1992) J Chem Soc Chem Commun 13:965–967 Davis JH (2004) Chem Lett 33:1072–1077 Wang L, Li H, Li P (2009) Tetrahedron 65:364–368 Premi C, Jain N (2013) Eur J Org Chem 24:5493–5499 Boruah PR, Koiri MJ, Bora U, Sarma D (2014) Tetrahedron Lett 55:2423–2425 Mathews CJ, Smith PJ, Welton T (2000) Chem Commun 50:1249–1250 Revell JD, Ganesan A (2002) Org Lett 4:3071–3073 Handy SC (2006) Synlett 18:3176–3178 Hierso J-C, Boudon J, Picquet M, Meunier P (2007) Eur J Org Chem 4:583–587 Hierso J-C, Picquet M, Cattey H, Meunier P (2006) Synlett 18:3005–3008 Saleh S, Picqet M, Meunier P, Hierso J-C (2009) Tetrahedron 65:7146–7150 Xie X, Chen B, Lu J, Han J, She X, Pan X (2004) Tetrahedron Lett 45:6235–6237 Baslé O, Borduas N, Dubois P, Chapuzet JM, Chan TH, Lessard J, Li CJ (2010) Chem Eur J 16:8162–8166 Kabalka GW, Dong G, Venkataiah B (2004) Tetrahedron Lett 45:2775–2777 Hao W, Xi Z, Cai M (2012) Synth Commun 42:2396–2406 Kalkhambkar RG, Laali KK (2011) Tetrahedron Lett 52:5525–5529 Okoturo OO, VanderNoot TJ (2004) J Electroanal Chem 568:167–181 Zhao DB, Fei ZF, Scopelliti R, Dyson P (2004) J Inorg Chem 43:2197–2205 Zhou Z, Matsumoto H, Tatsumi K (2004) Chem Eur J 10:6581–6591 Khupse ND, Kumar A (2010) Indian J Chem Sect A 49:635–648 Wang M, Yuan X, Li H, Ren L, Sun Z, Hou Y, Chu W (2015) Catal Commun 58:154–157 Song H, Yan N, Fei ZZ, Kilpin KJ, Scopelliti R, Li X, Dyson PJ (2012) Catal Today 183:172–177 Conte V, Fiorani G, Floris B, Galloni M, Woodward S (2010) Appl Catal A 381:161–168 Liu X, Mao Y, Lu M (2012) Appl Organomet Chem 26:305–309 Zhao H, Hao W, Xi Z, Cai M (2011) New J Chem 35:2661–2665 Schwab RS, Singh D, Alberto EE, Piquini P, Rodrigues OE, Braga AL (2011) Catal Sci Technol 1:569–573 Kalkhambkar RG, Laali KK (2012) Tetrahedron Lett 53:4212–4215 Pandurangachar M, Swamy BEK, Chandrashekar BN, Gilbert O, Sherigara BSJ (2011) Mol Liq 158:13–17 Meindersma GW, Hansmeier AR, de Haan AB (2010) Ind Eng Chem Res 49:7530–7540 Ortiz A, Galán LM, Gorri D, de Haan AB, Ortiz I (2010) Ind Eng Chem Res 49:7227–7233 Castro KLS, Lima PG, Miranda LSM, Souza ROA (2011) Tetrahedron Lett 52:4168–4173 Harjani JR, Abraham TJ, Gomez AT, Garcia MT, Singer RD, Scammells PJ (2010) Green Chem 12:650–655 Papageni A, Trombini C, Lombardo M, Bergantin S, Chams A, Chiarucci M, Miozzo L, Parraviucini M (2011) Organometallics 30:4325–4329 Fukuyama T, Rahaman MT, Maetani S, Ryu I (2011) Chem Lett 40:1027–1029 Keβler MT, Robke S, Sahler S, Prechtl MHG (2014) Catal Sci Technol 4:102–108 Taskin M, Cognigni A, Zirbs R, Reimhult E, Bica K (2017) RSC Adv 7:41144–41151 Hassine F, Pacheault M, Vaultier M (2011) C R Chim 14:671–679 Faye D, Vybornyi M, Boeda F, Legoupy S (2013) Tetrahedron 69:5421–5425 Gade LH, Bellemin-Laponnaz S (2007) Coord Chem Rev 251:718–725 Worm-Leonhard K, Meldal M (2008) Eur J Org Chem 31:5244–5253 Herrmann WA, Reisinger C, Spiegler M (1998) J Organomet Chem 557:93–96 Gründemann S, Kovacevic A, Albrecht M, Faller JW, Crabtree RH (2001) Chem Commun 2001:2274–2275 Arnold PL, Pearson S (2007) Coord Chem Rev 251:596–609 Wang AE, Xie JH, Wang LX, Zhou QL (2005) Tetrahedron 61:259–266 Ke H, Chen X, Zou G (2014) Appl Organomet Chem 28:54–60 Shi JC, Yu H, Jiang D, Yu M, Huang Y, Nong L, Zhang Q, Jin Z (2014) Catal Lett 144:158–164 Zhong R, Pothing A, Feng Y, Riener K, Herrmann WA, Kuhn FE (2014) Green Chem 16:4955–4962 Otsuka S, Fujino D, Murakami K, Yorimitsu H, Osuka A (2014) Chem Eur J 20:13146–13149 Sutar RL, Kumar V, Shingare RD, Thorat S, Gonnade R, Reddy DS (2014) Eur J Org Chem 21:4482–4486 Chua YY, Duong HA (2014) Chem Commun 50:8424–8427 Demir S, Özdemir İ, Çetinkaya B, Arslan H, Van Derveer D (2011) Polyhedron 30:195–200 Gooßen LJ, Paetzold J, Briel O, Rivas-Nass A, Karch R, Kayser B (2005) Synlett 2:275–278 Iglesias M, Prieto A, Nicasio MC (2010) Adv Synth Catal 352:1949–1954 Xu X, Xu B, Li Y, Hong SH (2010) Organometallics 29:6343–6346 Wang Z, Yu Y, Zhang YX, Li SZ, Quian H, Lin ZY (2015) Green Chem 17:413–420 Ke H, Chen X, Zhou G (2014) J Org Chem 79:7132–7140 Lamblin M, Nassar-Hardy L, Hierso JC, Fouquet E, Felpinb FX (2010) Adv Synth Catal 352:33 Liu R, Wu C, Wang Q, Ming J, Hao Y, Yu Y, Zhao F (2009) Green Chem 11:979–985 Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780–1804 Ornelas C, Salmon L, Aranzaes JR, Astruc D (2007) Chem Commun 46:4946–4948 Hendricks TR, Dams EE, Wensing ST, Lee I (2007) Langmuir 23:7404–7410 Rossi LM, Nangoi IM, Costa NJS (2009) Inorg Chem 48:4640–4642 Park JN, Forman AJ, Tang W, Cheng J, Hu YS, Lin H, McFarland EW (2008) Small 4:1694–1697 Prechtl MHG, Scholten JD, Dupont J (2010) Molecules 15:3441–3461 Wang J, Xu B, Sun H, Song G (2013) Tetrahedron Lett 54:238–241 Durand J, Teuma E, Gόmez M (2008) Eur J Inorg Chem 23:3577–3586 Durand J, Teuma E, Malbosc F, Kihn Y, Gόmez M (2008) Catal Commun 9:273–275 Raluy E, Favier I, Lόpez-Vinasco AM, Pradel C, Martin E, Madec D, Teuma E, Gόmez M (2011) Phys Chem Chem Phys 13:13579–13584 López-Vinasco AM, Guerrero-Ríos I, Favier I, Pradel C, Teuma E, Gómez M, Martin E (2015) Catal Commun 63:56–61 Huang Y, Wei Q, Wang Y, Dai L (2018) Carbon 136:150–159 Li L, Wang J, Wu T, Wang R (2018) Chem Eur J 18:7842–7845 Rodríguez-Pérez L, Coppel Y, Favier I, Teuma E, Serp P, Gόmez M (2010) Dalton Trans 39:7565–7568 Gruttadauria M, Liotta LF, Salvo AMP, Giacalone F, Parola VL, Aprile C, Noto R (2011) Adv Synth Catal 353:2119–2130 Zhang J, Zhao GF, Popovic Z, Lu Y, Li Y (2010) Mater Res Bull 45:1648–1653 Rostamnia S, Hossieni HG, Doustkhah E (2015) J Organomet Chem 791:18–23 Brun N, Hesemann P, Laurent G, Sanchez C, Birot M, Deleuze H, Backov R (2013) New J Chem 37:157–168 Vu H, Gonçalves F, Philippe R, Lamouroux E, Corrias M, Kihn Y, Plee D, Kalck P, Serp P (2006) J Catal 240:18–22 Serp P, Castillejos E (2010) ChemCatChem 2:41–47 Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337–358 Rodríguez-Pérez L, Pradel C, Serp P, Gόmez M, Teuma E (2011) ChemCatChem 3:749–754 Jagadale M, Kale D, Salunkhe R, Rajmane M, Rashinkar G (2018) J Mol Liq 265:525–535 More S, Jadhav S, Salunkhe R, Kumbhar A (2017) Mol Catal 442:126–132 Alam MN, Sarkar SM (2011) React Kinet Mech Catal 103:493 Debono N, Labande A, Manoury E, Daran JC, Poli R (2010) Organometallics 29:1879–1882 Liu G, Hou M, Sang J, Jiang T, Fan H, Zhang Z, Han B (2010) Green Chem 12:65–69 Silarska E, Trzeciaka AM, Pernakb J, Skrzypczak A (2013) Appl Catal A 466:216–223 Prasad V, Kale RR, Mishra BB, Kumar D, Tiwari VK (2012) Org Lett 14:2936–2939 Gao H, Zhou Y, Sheng X, Zhao S, Zhang C, Fang J, Wang B (2018) Appl Catal A Gen 552:138–146 Wilson M, Kore R, Ritchie AW, Fraser RC, Beaumont SK, Srivastava R, Badyal JPS (2018) Colloids Surf A 545:78–85 Welton T (2018) Biophys Rev 10:691–706