Targeting the mitochondrial permeability transition pore for drug discovery: Challenges and opportunities

Mitochondrion - Tập 63 - Trang 57-71 - 2022
Ibrahim Damilare Boyenle1,2, Abdulquddus Kehinde Oyedele2, Abdeen Tunde Ogunlana2, Aishat Folashade Adeyemo1, Faith Sunday Oyelere3, Olateju Balikis Akinola1, Temitope Isaac Adelusi2, Leonard Ona Ehigie2, Adeola Folasade Ehigie1
1Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
2Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
3Institute of Biomedical Research, Universität de Lleida, Spain

Tài liệu tham khảo

Adelusi, 2020, Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy, Biomed. Pharmacother., 123, 10.1016/j.biopha.2019.109732 Aggarwal, 2019, Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements, Biomolecules, 9, 735, 10.3390/biom9110735 Alcalá, 2008, A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release, Oncogene, 27, 44, 10.1038/sj.onc.1210600 A. Aouiss, D. Anka Idrissi, M. Kabine, and Y. Zaid, “Update of inflammatory proliferative retinopathy: Ischemia, hypoxia and angiogenesis.,” Curr. Res. Transl. Med., vol. 67, no. 2, pp. 62–71, May 2019, doi: 10.1016/j.retram.2019.01.005. Arbab, 2013, Dentatin isolated from Clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involvement of NF-κB signalling and G0/G1 cell cycle arrest: a bioassay-guided approach, J. Ethnopharmacol., 145, 343, 10.1016/j.jep.2012.11.020 Askenasy, 1997, Intermittent ischemia: energy metabolism, cellular volume regulation, adenosine and insights into preconditioning, J. Mol. Cell. Cardiol., 29, 1715, 10.1006/jmcc.1997.0410 Bagheri, 2016, Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies, Life Sci., 165, 43, 10.1016/j.lfs.2016.09.013 Baines, 2020, The mitochondrial permeability transition pore: Is it formed by the ATP synthase, adenine nucleotide translocators or both?, Biochim. Biophys. Acta, Bioenerg., 1861, 148249, 10.1016/j.bbabio.2020.148249 Baines, 2005, Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, 434, 658, 10.1038/nature03434 Baines, 2007, Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death, Nat. Cell Biol., 9, 550, 10.1038/ncb1575 Balestrino, 2020, Parkinson disease, Eur. J. Neurol., 27, 27, 10.1111/ene.14108 Basso, 2005, Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D, J. Biol. Chem., 280, 18558, 10.1074/jbc.C500089200 Bauer, 1999, Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis, J. Cell Biol., 147, 1493, 10.1083/jcb.147.7.1493 Beatrice, 1980, The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria, J. Biol. Chem., 255, 8663, 10.1016/S0021-9258(18)43551-X Beck, 2016, Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease, Nat. Commun., 7, 10.1038/ncomms11483 Becker, 2004, New concepts in reactive oxygen species and cardiovascular reperfusion physiology, Cardiovasc. Res., 61, 461, 10.1016/j.cardiores.2003.10.025 Bernardi, 2018, Why F-ATP Synthase Remains a Strong Candidate as the Mitochondrial Permeability Transition Pore, Front. Physiol., 9, 1543, 10.3389/fphys.2018.01543 Bernardi, 2015, Commentary: SPG7 is an essential and conserved component of the mitochondrial permeability transition pore, Front. Physiol., 6, 320, 10.3389/fphys.2015.00320 Bernardi, 2014, A Dialog on the First 20 Years of PML Research and the Next 20 Ahead, Front. Oncol., 4, 23, 10.3389/fonc.2014.00023 Bernardi, 2015, The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology, Physiol. Rev., 95, 1111, 10.1152/physrev.00001.2015 Betz, 2013, Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology, Proc. Natl. Acad. Sci. U. S. A., 110, 12526, 10.1073/pnas.1302455110 Beyer, 1996, Specific cardiolipin binding interferes with labeling of sulfhydryl residues in the adenosine diphosphate/adenosine triphosphate carrier protein from beef heart mitochondria, Biochemistry, 35, 15784, 10.1021/bi9610055 G. Bhosale and M. R. Duchen, “Investigating the Mitochondrial Permeability Transition Pore in Disease Phenotypes and Drug Screening.,” Curr. Protoc. Pharmacol., vol. 85, no. 1, p. e59, Jun. 2019, doi: 10.1002/cpph.59. Bonaca, 2016, Acute Limb Ischemia and Outcomes With Vorapaxar in Patients With Peripheral Artery Disease: Results From the Trial to Assess the Effects of Vorapaxar in Preventing Heart Attack and Stroke in Patients With Atherosclerosis-Thrombolysis in Myocardial Infarc, Circulation, 133, 997, 10.1161/CIRCULATIONAHA.115.019355 Bononi, 2013, Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner, Cell Death Differ., 20, 1631, 10.1038/cdd.2013.77 Bonora, 2017, Mitochondrial permeability transition involves dissociation of F(1)F(O) ATP synthase dimers and C-ring conformation, EMBO Rep., 18, 1077, 10.15252/embr.201643602 Bonora, 2013, Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition, Cell Cycle, 12, 674, 10.4161/cc.23599 Bonora, 2015, Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition, Oncogene, 34, 1475, 10.1038/onc.2014.96 Bores, 1998, Amyloid beta-peptides inhibit Na+/K+-ATPase: tissue slices versus primary cultures, Brain Res. Bull., 46, 423, 10.1016/S0361-9230(97)00382-1 Bose, 2003, Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate, J. Biol. Chem., 278, 39155, 10.1074/jbc.M306409200 Boyenle, 2021, Direct Keap1-kelch inhibitors as potential drug candidates for oxidative stress-orchestrated diseases: A review on In silico perspective, Pharmacol. Res., 167, 105577, 10.1016/j.phrs.2021.105577 Boyer, 1993, The binding change mechanism for ATP synthase–some probabilities and possibilities, BBA, 1140, 215 Brenner, 2011, Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer, Oncogene, 30, 883, 10.1038/onc.2010.501 Briston, 2019, Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets, Trends Pharmacol. Sci., 40, 50, 10.1016/j.tips.2018.11.004 Broekemeier, 1989, Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria, J. Biol. Chem., 264, 7826, 10.1016/S0021-9258(18)83116-7 Brustovetsky, 2020, The role of adenine nucleotide translocase in the mitochondrial permeability transition, Cells, 9, 10.3390/cells9122686 M. Buelna-Chontal, W. R. García-Niño, A. Silva-Palacios, C. Enríquez-Cortina, and C. Zazueta, “Implications of Oxidative and Nitrosative Post-Translational Modifications in Therapeutic Strategies against Reperfusion Damage.,” Antioxidants (Basel, Switzerland), vol. 10, no. 5, May 2021, doi: 10.3390/antiox10050749. Carini, 2017, Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants, Anticancer Res., 37, 4759 Carraro, 2018, High-Conductance Channel Formation in Yeast Mitochondria is Mediated by F-ATP Synthase e and g Subunits, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 50, 1840, 10.1159/000494864 Carraro, 2019, F-ATP synthase and the permeability transition pore: fewer doubts, more certainties, FEBS Lett., 593, 1542, 10.1002/1873-3468.13485 M. Carraro et al., “The Unique Cysteine of F-ATP Synthase OSCP Subunit Participates in Modulation of the Permeability Transition Pore.,” Cell Rep., vol. 32, no. 9, p. 108095, Sep. 2020, doi: 10.1016/j.celrep.2020.108095. A. Carrer et al., “Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase.,” Nat. Commun., vol. 12, no. 1, p. 4835, Aug. 2021, doi: 10.1038/s41467-021-25161-x. Carrer, 2021, Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT, Molecules, 26, Oct, 10.3390/molecules26216463 Carroll, 2019, Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase, Proc. Natl. Acad. Sci. U. S. A., 116, 12816, 10.1073/pnas.1904005116 Casari, 1998, Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease, Cell, 93, 973, 10.1016/S0092-8674(00)81203-9 Cesura, 2003, The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore, J. Biol. Chem., 278, 49812, 10.1074/jbc.M304748200 Chi, 2018, Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases, Int. J. Mol. Sci., 19, Oct, 10.3390/ijms19103082 Chinopoulos, 2012, Modulation of the mitochondrial permeability transition by cyclophilin D: moving closer to F(0)-F(1) ATP synthase?, Mitochondrion, 12, 41, 10.1016/j.mito.2011.04.007 Chinopoulos, 2013, What makes you can also break you: mitochondrial permeability transition pore formation by the c subunit of the F(1)F(0) ATP-synthase?, Front. Oncol., 3, 25, 10.3389/fonc.2013.00025 Clarke, 2002, Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A, J. Biol. Chem., 277, 34793, 10.1074/jbc.M202191200 Clémençon, 2013, The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction, Mol. Aspects Med., 34, 485, 10.1016/j.mam.2012.05.006 Coarelli, 2019, Loss of paraplegin drives spasticity rather than ataxia in a cohort of 241 patients with SPG7, Neurology, 92, e2679, 10.1212/WNL.0000000000007606 Colombini, 2012, VDAC structure, selectivity, and dynamics, BBA, 1818, 1457, 10.1016/j.bbamem.2011.12.026 Correa, 2018, Calcium Induces Mitochondrial Oxidative Stress Because of its Binding to Adenine Nucleotide Translocase, Cell Biochem. Biophys., 76, 445, 10.1007/s12013-018-0856-3 Crompton, 1988, Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress, Biochem. J., 255, 357 Crompton, 1998, Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore, Eur. J. Biochem., 258, 729, 10.1046/j.1432-1327.1998.2580729.x Cung, 2015, Cyclosporine before PCI in Patients with Acute Myocardial Infarction, N. Engl. J. Med., 373, 1021, 10.1056/NEJMoa1505489 T. L. Davis et al., “Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases.,” PLoS Biol., vol. 8, no. 7, p. e1000439, Jul. 2010, doi: 10.1371/journal.pbio.1000439. De Marchi, 2006, Electrophysiological characterization of the Cyclophilin D-deleted mitochondrial permeability transition pore, Mol. Membr. Biol., 23, 521, 10.1080/09687860600907644 Devalaraja-Narashimha, 2009, Cyclophilin D gene ablation protects mice from ischemic renal injury, Am. J. Physiol. Renal Physiol., 297, F749, 10.1152/ajprenal.00239.2009 J. A. Dominguez Rieg, S. de la Mora Chavez, and T. Rieg, “Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3.,” Am. J. Physiol. Regul. Integr. Comp. Physiol., vol. 311, no. 6, pp. R1186–R1191, Dec. 2016, doi: 10.1152/ajpregu.00372.2016. Du, 2008, Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease, Nat. Med., 14, 1097, 10.1038/nm.1868 Du, 2010, Mitochondrial permeability transition pore in Alzheimer’s disease: cyclophilin D and amyloid beta, BBA, 1802, 198 Eliseev, 2009, Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect, J. Biol. Chem., 284, 9692, 10.1074/jbc.M808750200 Elustondo, 2016, Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate, Cell death Discov., 2, 10.1038/cddiscovery.2016.70 Fang, 2018, VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation, Adv. Cancer Res., 138, 41, 10.1016/bs.acr.2018.02.002 Ferreira, 1993, Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges, J. Bioenerg. Biomembr., 25, 483, 10.1007/BF01108405 Findley, 1997, Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia, Blood, 89, 2986, 10.1182/blood.V89.8.2986 Forman, 1983, Dependence of mitochondrial oxidative phosphorylation on activity of the adenine nucleotide translocase, J. Biol. Chem., 258, 8649, 10.1016/S0021-9258(18)32106-9 Fricker, 2018, Neuronal Cell Death, Physiol. Rev., 98, 813, 10.1152/physrev.00011.2017 Gauba, 2017, Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice, J. Alzheimers Dis., 55, 1351, 10.3233/JAD-160822 Gauba, 2019, Cyclophilin D deficiency attenuates mitochondrial F1Fo ATP synthase dysfunction via OSCP in Alzheimer’s disease, Neurobiol. Dis., 121, 138, 10.1016/j.nbd.2018.09.020 Gerle, 2016, On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase, BBA, 1857, 1191 Gerle, 2020, Mitochondrial F-ATP synthase as the permeability transition pore, Pharmacol. Res., 160, 105081, 10.1016/j.phrs.2020.105081 Giorgio, 2009, Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex, J. Biol. Chem., 284, 33982, 10.1074/jbc.M109.020115 Giorgio, 2010, Cyclophilin D in mitochondrial pathophysiology, BBA, 1797, 1113 Giorgio, 2013, Dimers of mitochondrial ATP synthase form the permeability transition pore, Proc. Natl. Acad. Sci. U. S. A., 110, 5887, 10.1073/pnas.1217823110 Giorgio, 2017, Ca(2+) binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition, EMBO Rep., 18, 1065, 10.15252/embr.201643354 Gomez, 2007, Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice, Am. J. Physiol. Heart Circ. Physiol., 293, H1654, 10.1152/ajpheart.01378.2006 G. Gong, M. Song, G. Csordas, D. P. Kelly, S. J. Matkovich, and G. W. 2nd Dorn, “Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice.,” Science, vol. 350, no. 6265, p. aad2459, Dec. 2015, doi: 10.1126/science.aad2459. Gorrini, 2013, Modulation of oxidative stress as an anticancer strategy, Nat. Rev. Drug Discov., 12, 931, 10.1038/nrd4002 Göthel, 1999, Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts, Cell. Mol. Life Sci., 55, 423, 10.1007/s000180050299 Granger, 2015, Reperfusion injury and reactive oxygen species: The evolution of a concept, Redox Biol., 6, 524, 10.1016/j.redox.2015.08.020 Griffiths, 1993, Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts, J. Mol. Cell. Cardiol., 25, 1461, 10.1006/jmcc.1993.1162 Guo, 2019, Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimers and to the generation of the full-conductance mitochondrial megachannel, J. Biol. Chem., 294, 10987, 10.1074/jbc.RA119.008775 Gupta, 2017, Putative roles of mitochondrial Voltage-Dependent Anion Channel, Bcl-2 family proteins and c-Jun N-terminal Kinases in ischemic stroke associated apoptosis, Biochim. Open, 4, 47, 10.1016/j.biopen.2017.02.002 Gutiérrez-Aguilar, 2015, Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore, BBA, 1850, 2041 Gutiérrez-Aguilar, 2010, In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel, Arch. Biochem. Biophys., 494, 184, 10.1016/j.abb.2009.12.002 Gutiérrez-Aguilar, 2014, Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition, J. Mol. Cell. Cardiol., 72, 316, 10.1016/j.yjmcc.2014.04.008 A. V Hafner et al., “Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy.,” Aging (Albany. NY)., vol. 2, no. 12, pp. 914–923, Dec. 2010, doi: 10.18632/aging.100252. Halestrap, 2003, The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death, Curr. Med. Chem., 10, 1507, 10.2174/0929867033457278 Halestrap, 2004, Mitochondrial permeability transition pore opening during myocardial reperfusion - A target for cardioprotection, Cardiovasc. Res., 61, 372, 10.1016/S0008-6363(03)00533-9 N. L. Halladin, “Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries.,” Dan. Med. J., vol. 62, no. 4, p. B5054, Apr. 2015. Harris, 2000, The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability, Cell Death Differ., 7, 1182, 10.1038/sj.cdd.4400781 Haworth, 1979, The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site, Arch. Biochem. Biophys., 195, 460, 10.1016/0003-9861(79)90372-2 He, 2017, Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase, Proc. Natl. Acad. Sci. U. S. A., 114, 9086, 10.1073/pnas.1711201114 He, 2017, Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase, Proc. Natl. Acad. Sci. U. S. A., 114, 3409, 10.1073/pnas.1702357114 Heger, 2012, Transgenic overexpression of the adenine nucleotide translocase 1 protects cardiomyocytes against TGFβ1-induced apoptosis by stabilization of the mitochondrial permeability transition pore, J. Mol. Cell. Cardiol., 53, 73, 10.1016/j.yjmcc.2012.04.013 Hobai, 2015, Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy, Shock, 43, 3, 10.1097/SHK.0000000000000261 Hsu, 2018, PML: Regulation and multifaceted function beyond tumor suppression, Cell Biosci., 8, 5, 10.1186/s13578-018-0204-8 Hu, 2010, Knockdown of Cyclophilin D Gene by RNAi Protects Rat from Ischemia/ Reperfusion-Induced Renal Injury, Kidney Blood Press. Res., 33, 193, 10.1159/000316704 Huang, 2013, An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake, J. Biol. Chem., 288, 19870, 10.1074/jbc.M112.448290 Hurst, 2019, SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca(2+) influx, and regulation of mitochondrial permeability transition pore opening, J. Biol. Chem., 294, 10807, 10.1074/jbc.RA118.006443 S. Hurst, F. Gonnot, M. Dia, C. Crola Da Silva, L. Gomez, and S.-S. Sheu, “Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion.,” Cell Death Dis., vol. 11, no. 8, p. 661, Aug. 2020, doi: 10.1038/s41419-020-02864-5. N. Kavitha, C. Ein Oon, Y. Chen, J. R. Kanwar, and S. Sasidharan, “Phaleria macrocarpa (Boerl.) fruit induce G(0)/G(1) and G(2)/M cell cycle arrest and apoptosis through mitochondria-mediated pathway in MDA-MB-231 human breast cancer cell.,” J. Ethnopharmacol., vol. 201, pp. 42–55, Apr. 2017, doi: 10.1016/j.jep.2017.02.041. Jakubczyk, 2020, Reactive oxygen species - sources, functions, oxidative damage, Pol. Merkur. Lekarski, 48, 124 Jang, 2008, Over-expression of adenine nucleotide translocase 1 (ANT1) induces apoptosis and tumor regression in vivo, BMC Cancer, 8, 160, 10.1186/1471-2407-8-160 Javadov, 2017, Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection?, Cell. Mol. Life Sci., 74, 2795, 10.1007/s00018-017-2502-4 Johnson, 2021, Mitochondrial dysfunction in the development and progression of neurodegenerative diseases, Arch. Biochem. Biophys., 702, 108698, 10.1016/j.abb.2020.108698 Johnson, 2011, Targeting the F1Fo ATP Synthase: modulation of the body’s powerhouse and its implications for human disease, Curr. Med. Chem., 18, 4684, 10.2174/092986711797379177 Juhaszova, 2004, Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 113, 1535, 10.1172/JCI19906 Junkun, 2016, Curcumin Downregulates Phosphate Carrier and Protects against Doxorubicin Induced Cardiomyocyte Apoptosis, Biomed Res. Int., 2016, 1, 10.1155/2016/1980763 Kalogeris, 2012, Cell biology of ischemia/reperfusion injury, Int. Rev. Cell Mol. Biol., 298, 229, 10.1016/B978-0-12-394309-5.00006-7 A. Bartok et al., “IP(3) receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer.,” Nat. Commun., vol. 10, no. 1, p. 3726, Aug. 2019, doi: 10.1038/s41467-019-11646-3. Karch, 2019, Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD, Sci. Adv., 5, 10.1126/sciadv.aaw4597 Karlberg, 2009, Crystal structure of the ATPase domain of the human AAA+ protein paraplegin/SPG7, PLoS ONE, 4, 10.1371/journal.pone.0006975 S. H. Kaufmann et al., “Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse.,” Blood, vol. 91, no. 3, pp. 991–1000, Feb. 1998. Kim, 2002, Amyloid beta peptide induces cytochrome C release from isolated mitochondria, NeuroReport, 13, 1989, 10.1097/00001756-200210280-00032 Klutho, 2020, Genetic manipulation of SPG7 or NipSnap2 does not affect mitochondrial permeability transition, Cell death Discov., 6, 5, 10.1038/s41420-020-0239-6 Ko, 2014, Expression profiling of mitochondrial voltage-dependent anion channel-1 associated genes predicts recurrence-free survival in human carcinomas, PLoS ONE, 9, e110094, 10.1371/journal.pone.0110094 Kohr, 2011, Characterization of potential S-nitrosylation sites in the myocardium, Am. J. Physiol. Heart Circ. Physiol., 300, H1327, 10.1152/ajpheart.00997.2010 Kokoszka, 2004, The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, 427, 461, 10.1038/nature02229 Korotkov, 2016, To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria, Toxicol. In Vitro, 32, 320, 10.1016/j.tiv.2016.01.015 M. Koushi, Y. Aoyama, Y. Kamei, and R. Asakai, “Bisindolylpyrrole triggers transient mitochondrial permeability transitions to cause apoptosis in a VDAC1/2 and cyclophilin D-dependent manner via the ANT-associated pore.,” Sci. Rep., vol. 10, no. 1, p. 16751, Oct. 2020, doi: 10.1038/s41598-020-73667-z. Kovaleva, 2010, Induction of permeability of the inner membrane of yeast mitochondria, Biochemistry. (Mosc), 75, 297, 10.1134/S0006297910030053 Kowaltowski, 2001, Mitochondrial permeability transition and oxidative stress, FEBS Lett., 495, 12, 10.1016/S0014-5793(01)02316-X Krämer, 1996, Structural and functional aspects of the phosphate carrier from mitochondria, Kidney Int., 49, 947, 10.1038/ki.1996.133 Krasnov, 2013, Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy, Expert Opin. Ther. Targets, 17, 1221, 10.1517/14728222.2013.833607 Krauskopf, 2006, Properties of the permeability transition in VDAC1(-/-) mitochondria, BBA, 1757, 590 Kravenska, 2016, “Effect of Cyclosporin A on the Viability of Hippocampal Cells Cultured under Conditions of Modeling of Alzheimer ’ s, Disease”, 48, 246 P. Jóźwiak et al., “Expression of voltage-dependent anion channels in endometrial cancer and its potential prognostic significance.,” Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med., vol. 42, no. 8, p. 1010428320951057, Aug. 2020, doi: 10.1177/1010428320951057. Kubli, 2013, Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction, J. Biol. Chem., 288, 915, 10.1074/jbc.M112.411363 Kühlbrandt, 2019, Structure and Mechanisms of F-Type ATP Synthases, Annu. Rev. Biochem., 88, 515, 10.1146/annurev-biochem-013118-110903 Kwong, 2014, Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy, Cell Death Differ., 21, 1209, 10.1038/cdd.2014.36 Lam, 2013, Cyclophilin D and acetylation: a new link in cardiac signaling, Circ. Res., 113, 1268, 10.1161/CIRCRESAHA.113.302687 Lee, 2017, The Role of Biomarkers of Oxidative Stress in Breast Cancer Risk and Prognosis: A Systematic Review of the Epidemiologic Literature, J. Womens. Health (Larchmt), 26, 467, 10.1089/jwh.2016.5973 Lees, 1991, Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology, Brain Res. Brain Res. Rev., 16, 283, 10.1016/0165-0173(91)90011-V Leung, 2008, Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore, BBA, 1777, 946 Leung, 2008, The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition, J. Biol. Chem., 283, 26312, 10.1074/jbc.M805235200 Li, 2018, A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p, Theranostics, 8, 5855, 10.7150/thno.27285 Li, 2016, Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization, Cell Death Differ., 23, 380, 10.1038/cdd.2015.102 Lignitto, 2019, Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1, Cell, 178, 316, 10.1016/j.cell.2019.06.003 Losuwannarak, 2018, Cycloartobiloxanthone Induces Human Lung Cancer Cell Apoptosis via Mitochondria-dependent Apoptotic Pathway, In Vivo, 32, 71 Ludtmann, 2016, Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase, J. Neurosci., 36, 10510, 10.1523/JNEUROSCI.1659-16.2016 M. H. R. Ludtmann et al., “α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease.,” Nat. Commun., vol. 9, no. 1, p. 2293, Jun. 2018, doi: 10.1038/s41467-018-04422-2. Machida, 2006, Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells, J. Biol. Chem., 281, 14314, 10.1074/jbc.M513297200 Madungwe, 2018, Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest, Am. J. Physiol. Cell Physiol., 315, C28, 10.1152/ajpcell.00230.2017 Maji, 2018, Bcl-2 Antiapoptotic Family Proteins and Chemoresistance in Cancer, Adv. Cancer Res., 137, 37, 10.1016/bs.acr.2017.11.001 Makin, 2001, Apoptosis and cancer chemotherapy, Trends Cell Biol., 11, S22, 10.1016/S0962-8924(01)02124-9 S. Missiroli et al., “Mitochondria-associated membranes (MAMs) and inflammation.,” Cell Death Dis., vol. 9, no. 3, p. 329, Feb. 2018, doi: 10.1038/s41419-017-0027-2. Marks, 1996, Cellular functions of immunophilins, Physiol. Rev., 76, 631, 10.1152/physrev.1996.76.3.631 Martinucci, 2000, Ca2+-reversible inhibition of the mitochondrial megachannel by ubiquinone analogues, FEBS Lett., 480, 89, 10.1016/S0014-5793(00)01911-6 Matas, 2009, Increased expression and intramitochondrial translocation of cyclophilin-D associates with increased vulnerability of the permeability transition pore to stress-induced opening during compensated ventricular hypertrophy, J. Mol. Cell. Cardiol., 46, 420, 10.1016/j.yjmcc.2008.10.020 Mazure, 2017, VDAC in cancer, Biochim. Biophys. Acta, Bioenerg., 1858, 665, 10.1016/j.bbabio.2017.03.002 McGeoch, 1997, A 0.1-700 Hz current through a voltage-clamped pore: candidate protein for initiator of neural oscillations, Brain Res., 766, 188, 10.1016/S0006-8993(97)00618-5 Menazza, 2013, CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism, J. Mol. Cell. Cardiol., 56, 81, 10.1016/j.yjmcc.2012.12.004 Miller, 2017, 2 Moghadamtousi, 2014, Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB, BMC Complement. Altern. Med., 14, 299, 10.1186/1472-6882-14-299 Mor, 2017, Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration, Nat. Neurosci., 20, 1560, 10.1038/nn.4641 G. Morciano et al., “A naturally occurring mutation in ATP synthase subunit c is associated with increased damage following hypoxia/reoxygenation in STEMI patients.,” Cell Rep., vol. 35, no. 2, p. 108983, Apr. 2021, doi: 10.1016/j.celrep.2021.108983. Morciano, 2015, Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury, J. Mol. Cell. Cardiol., 78, 142, 10.1016/j.yjmcc.2014.08.015 Morciano, 2018, Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings, Neoplasia, 20, 510, 10.1016/j.neo.2018.03.005 Mukherjee, 2016, Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP, Gut, 65, 1333, 10.1136/gutjnl-2014-308553 Murphy, 2008, Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury, Physiol. Rev., 88, 581, 10.1152/physrev.00024.2007 Murphy, 2010, Alzheimer’s disease and the amyloid-beta peptide, J. Alzheimers Dis., 19, 311, 10.3233/JAD-2010-1221 Nakagawa, 2005, Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, 434, 652, 10.1038/nature03317 NavaneethaKrishnan, 2018, Loss of Cdk5 in breast cancer cells promotes ROS-mediated cell death through dysregulation of the mitochondrial permeability transition pore, Oncogene, 37, 1788, 10.1038/s41388-017-0103-1 Neginskaya, 2019, ATP Synthase C-Subunit-Deficient Mitochondria Have a Small Cyclosporine A-Sensitive Channel, but Lack the Permeability Transition Pore, Cell Rep., 26, 11, 10.1016/j.celrep.2018.12.033 Niedzwiecka, 2020, ATP Synthase Subunit a Supports Permeability Transition in Yeast Lacking Dimerization Subunits and Modulates yPTP Conductance, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 54, 211, 10.33594/000000215 Niikura, 2006, Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin, Curr. Neuropharmacol., 4, 139, 10.2174/157015906776359577 Nůsková, 2015, Mitochondrial ATP synthasome: Expression and structural interaction of its components, Biochem. Biophys. Res. Commun., 464, 787, 10.1016/j.bbrc.2015.07.034 Pak, 2017, Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species, Adv. Exp. Med. Biol., 967, 195, 10.1007/978-3-319-63245-2_12 M. Panel et al., “Small-Molecule Inhibitors of Cyclophilins Block Opening of the Mitochondrial Permeability Transition Pore and Protect Mice From Hepatic Ischemia/Reperfusion Injury.,” Gastroenterology, vol. 157, no. 5, pp. 1368–1382, Nov. 2019, doi: 10.1053/j.gastro.2019.07.026. Patra, 2013, Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer, Cancer Cell, 24, 213, 10.1016/j.ccr.2013.06.014 Patron, 2018, m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration, Cell Res., 28, 296, 10.1038/cr.2018.17 Pavón, 2015, Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase, Life Sci., 139, 108, 10.1016/j.lfs.2015.08.011 Pérez, 2017, Development or disease: duality of the mitochondrial permeability transition pore, Dev. Biol., 426, 1, 10.1016/j.ydbio.2017.04.018 Perillo, 2020, ROS in cancer therapy: the bright side of the moon, Exp. Mol. Med., 52, 192, 10.1038/s12276-020-0384-2 Pinke, 2020, Cryo-EM structure of the entire mammalian F-type ATP synthase, Nat. Struct. Mol. Biol., 27, 1077, 10.1038/s41594-020-0503-8 S. Marchi, V. A. M. Vitto, S. Patergnani, and P. Pinton, “High mitochondrial Ca(2+) content increases cancer cell proliferation upon inhibition of mitochondrial permeability transition pore (mPTP).,” Cell cycle (Georgetown, Tex.), vol. 18, no. 8. pp. 914–916, Apr. 2019, doi: 10.1080/15384101.2019.1598729. Pirkmajer, 2019, Hormonal regulation of Na(+)-K(+)-ATPase from the evolutionary perspective, Curr. Top. Membr., 83, 315, 10.1016/bs.ctm.2019.01.009 Porter, 2018, Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function, Biomolecules, 8, Dec, 10.3390/biom8040176 Qiao, 2017, PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction, Sci. Rep., 7, 10.1038/srep45379 J. Radhakrishnan, S. Bazarek, B. Chandran, and R. J. Gazmuri, “Cyclophilin-D: a resident regulator of mitochondrial gene expression.,” FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., vol. 29, no. 7, pp. 2734–2748, Jul. 2015, doi: 10.1096/fj.14-263855. Rasola, 2010, Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition, Proc. Natl. Acad. Sci. U. S. A., 107, 726, 10.1073/pnas.0912742107 Reczek, 2017, The Two Faces of Reactive Oxygen Species in Cancer, Annu. Rev. Cancer Biol., 1, 79, 10.1146/annurev-cancerbio-041916-065808 Rück, 1998, Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore, FEBS Lett., 426, 97, 10.1016/S0014-5793(98)00317-2 Sambri, 2020, Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia, EBioMedicine, 61, 103050, 10.1016/j.ebiom.2020.103050 Schinzel, 2005, Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia, Proc. Natl. Acad. Sci. U. S. A., 102, 12005, 10.1073/pnas.0505294102 Schneider, 2003, Protection of myocardium by cyclosporin A and insulin: in vitro simulated ischemia study in human myocardium, Ann. Thorac. Surg., 76, 1240, 10.1016/S0003-4975(03)00830-0 Schubert, 2004, Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor, Cancer Res., 64, 85, 10.1158/0008-5472.CAN-03-0476 Seifert, 2015, The mitochondrial phosphate carrier: Role in oxidative metabolism, calcium handling and mitochondrial disease, Biochem. Biophys. Res. Commun., 464, 369, 10.1016/j.bbrc.2015.06.031 Shanmuganathan, 2005, Mitochondrial permeability transition pore as a target for cardioprotection in the human heart, Am. J. Physiol. Heart Circ. Physiol., 289, H237, 10.1152/ajpheart.01192.2004 Shanmughapriya, 2015, SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore, Mol. Cell, 60, 47, 10.1016/j.molcel.2015.08.009 Sharma, 2019, Cancer Metabolism and the Evasion of Apoptotic Cell Death, Cancers (Basel), 11, Aug, 10.3390/cancers11081144 Shibata, 2019, Time-lapse imaging of Ca(2+)-induced swelling and permeability transition: Single mitochondrion study, Arch. Biochem. Biophys., 663, 288, 10.1016/j.abb.2019.01.016 Shoshan-Barmatz, 2010, VDAC, a multi-functional mitochondrial protein regulating cell life and death, Mol. Aspects Med., 31, 227, 10.1016/j.mam.2010.03.002 Shulga, 2010, Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria, J. Cell Sci., 123, 894, 10.1242/jcs.061846 Šileikytė, 2011, Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor), J. Biol. Chem., 286, 1046, 10.1074/jbc.M110.172486 A. Singh, R. Kukreti, L. Saso, and S. Kukreti, “Oxidative Stress: A Key Modulator in Neurodegenerative Diseases.,” Molecules, vol. 24, no. 8, Apr. 2019, doi: 10.3390/molecules24081583. Sneyers, 2020, Type 3 IP(3) receptors driving oncogenesis, Cell Calcium, 86, 102141, 10.1016/j.ceca.2019.102141 J. Song, J. Ham, T. Hong, G. Song, and W. Lim, “Fraxetin Suppresses Cell Proliferation and Induces Apoptosis through Mitochondria Dysfunction in Human Hepatocellular Carcinoma Cell Lines Huh7 and Hep3B.,” Pharmaceutics, vol. 13, no. 1, Jan. 2021, doi: 10.3390/pharmaceutics13010112. Sun, 2019, Parkin Regulates Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury by Targeting Cyclophilin-D, Antioxid. Redox Signal., 31, 1177, 10.1089/ars.2019.7734 Szabó, 1992, Modulation of the mitochondrial megachannel by divalent cations and protons, J. Biol. Chem., 267, 2940, 10.1016/S0021-9258(19)50677-9 Szabó, 1991, The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A, J. Biol. Chem., 266, 3376, 10.1016/S0021-9258(19)67802-6 Szabó, 1993, The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel, FEBS Lett., 330, 206, 10.1016/0014-5793(93)80274-X Takahashi, 1989, Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin, Nature, 337, 473, 10.1038/337473a0 Tanaka, 1989, A possible role of inorganic phosphate as a regulator of oxidative phosphorylation in combined urea synthesis and gluconeogenesis in perfused rat liver. A phosphorus magnetic resonance spectroscopy study, J. Biol. Chem., 264, 10034, 10.1016/S0021-9258(18)81763-X U. Grädler et al., “Discovery of novel Cyclophilin D inhibitors starting from three dimensional fragments with millimolar potencies.,” Bioorg. Med. Chem. Lett., vol. 29, no. 23, p. 126717, Dec. 2019, doi: 10.1016/j.bmcl.2019.126717. N. Tombo, A. D. Imam Aliagan, Y. Feng, H. Singh, and J. C. Bopassa, “Cardiac ischemia/reperfusion stress reduces inner mitochondrial membrane protein (mitofilin) levels during early reperfusion.,” Free Radic. Biol. Med., vol. 158, pp. 181–194, Oct. 2020, doi: 10.1016/j.freeradbiomed.2020.06.039. A. Urbani et al., “Purified F-ATP synthase forms a Ca(2+)-dependent high-conductance channel matching the mitochondrial permeability transition pore.,” Nat. Commun., vol. 10, no. 1, p. 4341, Sep. 2019, doi: 10.1038/s41467-019-12331-1. Valasani, 2014, Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors, J. Chem. Inf. Model., 54, 902, 10.1021/ci5000196 Valasani, 2016, Identification of a Small Molecule Cyclophilin D Inhibitor for Rescuing Aβ-Mediated Mitochondrial Dysfunction, ACS Med. Chem. Lett., 7, 294, 10.1021/acsmedchemlett.5b00451 Vallée, 2018, Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis, Front. Immunol., 9, 745, 10.3389/fimmu.2018.00745 Vaseva, 2012, p53 opens the mitochondrial permeability transition pore to trigger necrosis, Cell, 149, 1536, 10.1016/j.cell.2012.05.014 Veenman, 2008, VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis, J. Bioenerg. Biomembr., 40, 199, 10.1007/s10863-008-9142-1 Veres, 2021, Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia, FEBS Open Bio, 11, 684, 10.1002/2211-5463.13091 Vultur, 2018, The role of the mitochondrial calcium uniporter (MCU) complex in cancer, Pflugers Arch., 470, 1149, 10.1007/s00424-018-2162-8 Waldmeier, 2003, Cyclophilin D as a drug target, Curr. Med. Chem., 10, 1485, 10.2174/0929867033457160 Wali, 2020, Mitochondrial Function in Hereditary Spastic Paraplegia: Deficits in SPG7 but Not SPAST Patient-Derived Stem Cells, Front. Neurosci., 14, 820, 10.3389/fnins.2020.00820 Walther, 2007, Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease, Circulation, 115, 333, 10.1161/CIRCULATIONAHA.106.643296 Wang, 2005, The cyclophilins, Genome Biol., 6, 226, 10.1186/gb-2005-6-7-226 Warne, 2016, Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis, J. Biol. Chem., 291, 4356, 10.1074/jbc.M115.700385 J. Szymański et al., “Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure.,” Int. J. Mol. Sci., vol. 18, no. 7, Jul. 2017, doi: 10.3390/ijms18071576. Wissing, 2010, Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice, Neuromuscul. Disord., 20, 753, 10.1016/j.nmd.2010.06.016 Woodfield, 1998, Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition, Biochem. J., 336, 287, 10.1042/bj3360287 Wu, 2018, Current Mechanistic Concepts in Ischemia and Reperfusion Injury, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 46, 1650, 10.1159/000489241 Xu, 2020, Lipid Metabolism at Membrane Contacts: Dynamics and Functions Beyond Lipid Homeostasis, Front. Cell Dev. Biol., 8, 10.3389/fcell.2020.615856 J. Zalewski et al., “Cyclosporine A reduces microvascular obstruction and preserves left ventricular function deterioration following myocardial ischemia and reperfusion.,” Basic Res. Cardiol., vol. 110, no. 2, p. 18, Mar. 2015, doi: 10.1007/s00395-015-0475-8. Zamzami, 2001, The mitochondrion in apoptosis: how Pandora’s box opens, Nat. Rev. Mol. Cell Biol., 2, 67, 10.1038/35048073 Zancani, 2020, Structural and functional properties of plant mitochondrial F-ATP synthase, Mitochondrion, 53, 178, 10.1016/j.mito.2020.06.001 C.-X. Zhang et al., “Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats.,” J. Nanobiotechnology, vol. 17, no. 1, p. 18, Jan. 2019, doi: 10.1186/s12951-019-0451-9. Zhang, 2020, Cyclophilin D counterbalances mitochondrial calcium uniporter-mediated brain mitochondrial calcium uptake, Biochem. Biophys. Res. Commun., 529, 314, 10.1016/j.bbrc.2020.05.204 R. Zhang et al., “Hirsutine induces mPTP-dependent apoptosis through ROCK1/PTEN/PI3K/GSK3β pathway in human lung cancer cells.,” Cell Death Dis., vol. 9, no. 6, p. 598, May 2018, doi: 10.1038/s41419-018-0641-7. Zheng, 2004, Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide, Oncogene, 23, 1239, 10.1038/sj.onc.1207205 W. Zhou, F. Marinelli, C. Nief, and J. D. Faraldo-Gómez, “Atomistic simulations indicate the c-subunit ring of the F(1)F(o) ATP synthase is not the mitochondrial permeability transition pore.,” Elife, vol. 6, Feb. 2017, doi: 10.7554/eLife.23781. H. Zhou et al., “Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury.,” J. Pineal Res., vol. 65, no. 3, p. e12503, Oct. 2018, doi: 10.1111/jpi.12503. Zhou, 2018, Erinacine Facilitates the Opening of the Mitochondrial Permeability Transition Pore Through the Inhibition of the PI3K/ Akt/GSK-3β Signaling Pathway in Human Hepatocellular Carcinoma, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 50, 851, 10.1159/000494472 Zorov, 2014, Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909, 10.1152/physrev.00026.2013