Targeting the Autophagy Specific Lipid Kinase VPS34 for Cancer Treatment: An Integrative Repurposing Strategy

The Protein Journal - Tập 40 - Trang 41-53 - 2021
Poornimaa Murali1, Kanika Verma2, Thanyada Rungrotmongkol2, Perarasu Thangavelu3, Ramanathan Karuppasamy1
1Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
2Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
3Department of Chemical Engineering, AC Tech Campus, Anna University, Chennai, India

Tóm tắt

The impact of autophagy on cancer treatment and its corresponding responsiveness has galvanized the scientific community to develop novel inhibitors for cancer treatment. Importantly, the discovery of inhibitors that targets the early phase of autophagy was identified as a beneficial choice. Despite the number of research in recent years, screening of the DrugBank repository (9591 molecules) for the Vacuolar protein sorting 34 (VPS34) has not been reported earlier. Therefore, the present study was designed to identify potential VPS34 antagonists using integrated pharmacophore strategies. Primarily, an energy-based pharmacophore and receptor cavity-based analysis yielded five (DHRRR) and seven featured (AADDHRR) pharmacophore hypotheses respectively, which were utilized for the database screening process. The glide score, the binding free energy, pharmacokinetics and pharmacodynamics properties were examined to narrow down the screened compounds. This analysis yielded a hit molecule, DB03916 that exhibited a better docking score, higher binding affinity and better drug-like properties in contrast to the reference compound that suffers from a toxicity property. Importantly, the result was validated using a 50 ns molecular dynamics simulation study. Overall, we conclude that the identified hit molecule DB03916 is believed to serve as a prospective antagonist against VPS34 for cancer treatment.

Tài liệu tham khảo

Kumar A, Singh UK, Chaudhary A (2015) Targeting autophagy to overcome drug resistance in cancer therapy. Future Med Chem 7:1535–1542 Rebecca VW, Amaravadi RK (2016) Emerging strategies to effectively target autophagy in cancer. Oncogene 35:1–11 Gewirtz DA (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res 74:647–651 Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541 Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596 Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91 Parekh VV, Pabbisetty SK, Wu L, Sebzda E, Martinez J, Zhang J, Van Kaer L (2017) Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8α+ dendritic cells. Proc Natl Acad Sci USA 114:E6371–E6380 Jaber N, Zong WX (2013) Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann N Y Acad Sci 1280:48 Ohashi Y, Tremel S, Williams RL (2019) VPS34 complexes from a structural perspective. J Lipid Res 60:229–241 Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, Cantwell J (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16:1069–1079 Honda A, Harrington E, Cornella-Taracido I, Furet P, Knapp MS, Glick M, Triantafellow E, Dowdle WE, Wiedershain D, Maniara W, Moore C (2016) Potent, selective, and orally bioavailable inhibitors of VPS34 provide chemical tools to modulate autophagy in vivo. ACS Med Chem Lett 7:72–76 Pasquier B (2015) SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy 11:725–726 Pasquier B, El-Ahmad Y, Filoche-Romme B, Dureuil C, Fassy F, Abecassis PY, Mathieu M, Bertrand T, Benard T, Barriere C, El Batti S (2015) Discovery of (2 S)-8-[(3R)-3-Methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)-3,4 dihydro-2 H-pyrimido [1, 2-a] pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. J Med Chem 58:376–400 Bago R, Malik N, Munson MJ, Prescott AR, Davies P, Sommer E, Shpiro N, Ward R, Cross D, Ganley IG, Alessi DR (2014) Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem J 463:413–427 Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, Cosford ND (2018) Autophagy in cancer: regulation by small molecules. Trends Pharmacol Sci 39:1021–1032 Chude CI, Amaravadi RK (2017) Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci 18:1279 Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34:D302–D305 Xie XQS (2010) Exploiting PubChem for virtual screening. Expert Opin Drug Discov 5:1205–1220 Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234 Sastry GM, Dixon SL, Sherman W (2011) Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J Chem Inf Model 51:2455–2466 Loving K, Salam NK, Sherman W (2009) Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J Comput Aided Mol Des 23:541–554 Rohini K, Ramanathan K, Shanthi V (2019) Multi-dimensional screening strategy for drug repurposing with statistical framework—a new road to influenza drug discovery. Cell Biochem Biophys 77:319–333 Halgren T (2007) New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des 69:146–148 Rajamanikandan S, Jeyakanthan J, Srinivasan P (2017) Molecular docking, molecular dynamics simulations, computational screening to design quorum sensing inhibitors targeting LuxP of Vibrio harveyi and its biological evaluation. Appl Biochem 181:192–218 Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49:2356–2368 Singh KD, Kirubakaran P, Nagarajan S, Sakkiah S, Muthusamy K, Velmurgan D, Jeyakanthan J (2012) Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of Chikungunya virus nsP2 protease. J Mol Model 18:39–51 Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759 Zhang X, Perez-Sanchez HC, Lightstone F (2017) A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr Top Med Chem 17:1631–1639 Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897 Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49:4805–4808 Du J, Sun H, Xi L, Li J, Yang Y, Liu H, Yao X (2011) Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM–GBSA calculation. J Comput Chem 32:2800–2809 Kellici TF, Ntountaniotis D, Liapakis G, Tzakos AG, Mavromoustakos T (2019) The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. Arab J Chem 12:5062–5078 Sirin S, Kumar R, Martinez C, Karmilowicz MJ, Ghosh P, Abramov YA, Martin V, Sherman W (2014) A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. J Chem Inf Model 54:2334–2346 Hodgson J (2001) ADMET - turning chemicals into drugs. Nat Biotechnol 19:722–726 Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, Liu X, Luo X, Luo C, Chen K, Zheng M (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48:488–515 Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263 Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748 Mu P, Karuppasamy R (2019) Discovery of human autophagy initiation kinase ULK1 inhibitors by multi-directional in silico screening strategies. J Recept Sig Transd 39:122–133 James N, Ramanathan K (2018) Ligand-based pharmacophore screening strategy: a pragmatic approach for targeting HER proteins. Appl Biochem Biotechnol 186:85–108 Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347:631–639 Schüttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D 60:1355–1363 Kumar A, Rajendran V, Sethumadhavan R, Purohit R (2013) Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PLoS ONE 8:1 Rizzi A, Fioni A (2008) Virtual screening using PLS discriminant analysis and ROC curve approach: an application study on PDE4 inhibitors. J Chem Info Model 48:1686–1692 Pasquier B (2016) Autophagy inhibitors. Cell Mol Life Sci 73:985–1001 Gudipati S, Muttineni R, Mankad AU, Pandya HA, Jasrai YT (2018) Molecular docking based screening of Noggin inhibitors. Bioinformation 14:15 Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296 Borkotoky S, Meena CK, Murali A (2016) Interaction analysis of T7 RNA polymerase with heparin and its low molecular weight derivatives–an in silico approach. Bioinform Biol Insights 10:BBI-B40427 Greenidge PA, Kramer C, Mozziconacci JC, Wolf RM (2013) MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J Chem Inf Model 53:201–209 Li J, Zhou N, Luo K, Zhang W, Li X, Wu C, Bao J (2014) In silico discovery of potential VEGFR-2 inhibitors from natural derivatives for anti-angiogenesis therapy. Int J Mol Sci 15:15994–16011 Zahedi S, Fitzwalter BE, Morin A, Grob S, Desmarais M, Nellan A, Green AL, Vibhakar R, Hankinson TC, Foreman NK, Levy JMM (2019) Effect of early-stage autophagy inhibition in BRAF V600E autophagy-dependent brain tumor cells. Cell Death Dis 10:1–15 Kondapuram SK, Sarvagalla S, Coumar MS (2019) Targeting autophagy with small molecules for cancer therapy. J Cancer Metastasis Treat 5:32 McNair TJ, Wibin FA, Hoppe ET, Schmidt JL, DePeyster FA (1963) Antitumor action of several new piperazine derivatives compared to certain standard anti-cancer agent. J Surg Res 3:130–136 Rush TS, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein–protein interaction. J Med Chem 48:1489–1495 Preston-Martin S, Pike MC, Ross RK, Jones PA, Henderson BE (1990) Increased cell division as a cause of human cancer. Cancer Res 50:7415–7421 Imani S, Cheng J, Shasaltaneh MD, Wei C, Yang L, Fu S, Zou H, Khan MA, Zhang X, Chen H, Zhang D (2018) Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy. Oncotarget 9:122 Guan S, Xu Y, Qiao Y, Kuai Z, Qian M, Jiang X, Wang S, Zhang H, Kong W, Shan Y (2017) Exploration of binding and inhibition mechanism of a small molecule inhibitor of influenza virus H1N1 hemagglutinin by molecular dynamics simulation. Sci Rep 7:1–14 Cloete R, Akurugu WA, Werely CJ, van Helden PD, Christoffels A (2017) Structural and functional effects of nucleotide variation on the human TB drug metabolizing enzyme arylamine N-acetyltransferase 1. J Mol Graph Model 75:330–339 Singh A, Singh A, Grover S, Pandey B, Kumari A, Grover A (2018) Wild-type catalase peroxidase vs G279D mutant type: molecular basis of Isoniazid drug resistance in Mycobacterium tuberculosis. Gene 641:226–234