Nhắm đến staphylocoagulase bằng isoquercitrin bảo vệ chuột khỏi viêm phổi do Staphylococcus aureus gây ra

Springer Science and Business Media LLC - Tập 104 - Trang 3909-3919 - 2020
Zeyuan Gao1, Yongxin Luan2, Panpan Yang3, Li Wang1, Haitao Zhang1, Shisong Jing1, Lin Wang4, Tiedong Wang1, Dacheng Wang1
1College of Animal Science, Jilin University, Changchun, China
2Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun, China
3Department of Pharmacology, College of Basic Medical Science, Jilin University, Changchun, China
4Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China

Tóm tắt

Staphylocoagulase (Coa) là một yếu tố virulance của Staphylococcus aureus (S. aureus) có tác dụng thúc đẩy quá trình đông máu bằng cách kích hoạt prothrombin để chuyển fibrinogen thành fibrin. Coa đóng vai trò quan trọng trong sinh bệnh học của bệnh và là một mục tiêu tiềm năng cho việc điều trị các bệnh nhiễm S. aureus. Trong nghiên cứu này, chúng tôi đã xác định rằng isoquercitrin, một hợp chất flavonol tự nhiên, có thể làm giảm đáng kể hoạt động của Coa ở nồng độ không ảnh hưởng đến sự phát triển của vi khuẩn. Các nghiên cứu cơ chế bằng mô phỏng động lực học phân tử cho thấy isoquercitrin liên kết với Coa qua sự tương tác với Asp-181 và Tyr-188, qua đó ảnh hưởng đến khả năng liên kết của Coa với prothrombin. Quan trọng là, các nghiên cứu in vivo cho thấy điều trị bằng isoquercitrin làm giảm đáng kể gánh nặng vi khuẩn, tổn thương bệnh lý và viêm của mô phổi, đồng thời cải thiện tỷ lệ sống sót của những con chuột nhiễm chủng S. aureus Newman. Dữ liệu này cho thấy rằng isoquercitrin là một chất ức chế Coa tiềm năng có thể được sử dụng để phát triển các loại thuốc điều trị nhằm chống lại các nhiễm trùng do S. aureus.

Từ khóa

#Staphylococcus aureus #staphylocoagulase #isoquercitrin #viêm phổi #điều trị nhiễm trùng

Tài liệu tham khảo

Alksne LE, Projan SJ (2000) Bacterial virulence as a target for antimicrobial chemotherapy. Curr Opin Biotechnol 11(6):625–636. https://doi.org/10.1016/s0958-1669(00)00155-5 Bandyopadhyay S, Valder CR, Huynh HG, Ren H, Allison WS (2002) The beta G156C substitution in the F1-ATPase from the thermophilic Bacillus PS3 affects catalytic site cooperativity by destabilizing the closed conformation of the catalytic site. Biochemistry 41(48):14421–14429. https://doi.org/10.1021/bi026243g Bjerketorp J, Nilsson M, Ljungh A, Flock JI, Jacobsson K, Frykberg L (2002) A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. Microbiology (Reading, England) 148(Pt 7):2037–2044. https://doi.org/10.1099/00221287-148-7-2037 Cheng AG, DeDent AC, Schneewind O, Missiakas D (2011) A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol 19(5):225–232. https://doi.org/10.1016/j.tim.2011.01.007 Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6(8):e1001036. https://doi.org/10.1371/journal.ppat.1001036 Delgado-Valverde M, Valiente-Mendez A, Torres E, Almirante B, Gomez-Zorrilla S, Borrell N, Aller-Garcia AI, Gurgui M, Almela M, Sanz M, Bou G, Martinez-Martinez L, Canton R, Antonio Lepe J, Causse M, Gutierrez-Gutierrez B, Pascual A, Rodriguez-Bano J (2017) MIC of amoxicillin/clavulanate according to CLSI and EUCAST: discrepancies and clinical impact in patients with bloodstream infections due to Enterobacteriaceae. J Antimicrob Chemother 72(5):1478–1487. https://doi.org/10.1093/jac/dkw562 Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, Kawabata S, Huber R, Bode W, Bock PE (2003) Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425(6957):535–539. https://doi.org/10.1038/nature01962 Gasparotto Junior A, Gasparotto FM, Lourenco EL, Crestani S, Stefanello ME, Salvador MJ, da Silva-Santos JE, Marques MC, Kassuya CA (2011) Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: evidence for the inhibition of angiotensin converting enzyme. J Ethnopharmacol 134(2):363–372. https://doi.org/10.1016/j.jep.2010.12.026 Gordon CP, Williams P, Chan WC (2013) Attenuating Staphylococcus aureus virulence gene regulation: a medicinal chemistry perspective. J Med Chem 56(4):1389–1404. https://doi.org/10.1021/jm3014635 Gotz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput 8(5):1542–1555. https://doi.org/10.1021/ct200909j Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet (London, England) 368(9538):874–885. https://doi.org/10.1016/s0140-6736(06)68853-3 Huynh K, Partch CL (2015) Analysis of protein stability and ligand interactions by thermal shift assay. Curr Protoc Protein Sci 79:28.9.1–28.914. https://doi.org/10.1002/0471140864.ps2809s79 Jurasekova Z, Marconi G, Sanchez-Cortes S, Torreggiani A (2009) Spectroscopic and molecular modeling studies on the binding of the flavonoid luteolin and human serum albumin. Biopolymers 91(11):917–927. https://doi.org/10.1002/bip.21278 Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Jama 298(15):1763–1771. https://doi.org/10.1001/jama.298.15.1763 Krishna SN, Luan CH, Mishra RK, Xu L, Scheidt KA, Anderson WF, Bergan RC (2013) A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS One 8(12):e81504. https://doi.org/10.1371/journal.pone.0081504 Kroh HK, Panizzi P, Bock PE (2009) Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci U S A 106(19):7786–7791. https://doi.org/10.1073/pnas.0811750106 Lerche CJ, Christophersen LJ, Goetze JP, Nielsen PR, Thomsen K, Enevold C, Hoiby N, Jensen PO, Bundgaard H, Moser C (2019) Adjunctive dabigatran therapy improves outcome of experimental left-sided Staphylococcus aureus endocarditis. PLoS One 14(4):e0215333. https://doi.org/10.1371/journal.pone.0215333 Liesenborghs L, Verhamme P, Vanassche T (2018) Staphylococcus aureus, master manipulator of the human hemostatic system. J Thromb Haemost : JTH 16(3):441–454. https://doi.org/10.1111/jth.13928 Lo MC, Aulabaugh A, Jin G, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332(1):153–159. https://doi.org/10.1016/j.ab.2004.04.031 Loeb L (1903) The influence of certain bacteria on the coagulation of the blood. J Med Res 10(3):407–419 Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532. https://doi.org/10.1056/nejm199808203390806 Mancini S, Oechslin F, Menzi C, Que YA, Claes J, Heying R, Veloso TR, Vanassche T, Missiakas D, Schneewind O, Moreillon P, Entenza JM (2018) Marginal role of von Willebrand factor-binding protein and coagulase in the initiation of endocarditis in rats with catheter-induced aortic vegetations. Virulence 9(1):1615–1624. https://doi.org/10.1080/21505594.2018.1528845 Panizzi P, Nahrendorf M, Figueiredo JL, Panizzi J, Marinelli B, Iwamoto Y, Keliher E, Maddur AA, Waterman P, Kroh HK, Leuschner F, Aikawa E, Swirski FK, Pittet MJ, Hackeng TM, Fuentes-Prior P, Schneewind O, Bock PE, Weissleder R (2011) In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 17(9):1142–1146. https://doi.org/10.1038/nm.2423 Peetermans M, Verhamme P, Vanassche T (2015) Coagulase activity by Staphylococcus aureus: a potential target for therapy? Semin Thromb Hemost 41(4):433–444. https://doi.org/10.1055/s-0035-1549849 Pierce LC, Salomon-Ferrer R, Augusto FOC, McCammon JA, Walker RC (2012) Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8(9):2997–3002. https://doi.org/10.1021/ct300284c Punkvang A, Saparpakorn P, Hannongbua S, Wolschann P, Beyer A, Pungpo P (2010) Investigating the structural basis of arylamides to improve potency against M. tuberculosis strain through molecular dynamics simulations. Eur J Med Chem 45(12):5585–5593. https://doi.org/10.1016/j.ejmech.2010.09.008 Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9(2):117–128. https://doi.org/10.1038/nrd3013 Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626 Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888. https://doi.org/10.1021/ct400314y Schaffner-Barbero C, Gil-Redondo R, Ruiz-Avila LB, Huecas S, Lappchen T, den Blaauwen T, Diaz JF, Morreale A, Andreu JM (2010) Insights into nucleotide recognition by cell division protein FtsZ from a mant-GTP competition assay and molecular dynamics. Biochemistry 49(49):10458–10472. https://doi.org/10.1021/bi101577p Seki K, Ogasawara M, Sakurada J, Murai M, Masuda S (1989) Altered virulence of a pleiotropic Staphylococcus aureus mutant with a low producibility of coagulase and other factors in mice. Microbiol Immunol 33(12):981–990. https://doi.org/10.1111/j.1348-0421.1989.tb03156.x Sukito A, Tachibana S (2014) Isolation of hyperoside and isoquercitrin from Camellia sasanqua as antioxidant agents. Pak J Biol Sci : PJBS 17(8):999–1006. https://doi.org/10.3923/pjbs.2014.999.1006 Trivedi U, Madsen JS, Everett J, Fell C, Russel J, Haaber J, Crosby HA, Horswill AR, Burmolle M, Rumbaugh KP, Sorensen SJ (2018) Staphylococcus aureus coagulases are exploitable yet stable public goods in clinically relevant conditions. Proc Natl Acad Sci U S A 115(50):E11771–E11779. https://doi.org/10.1073/pnas.1804850115 Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334 Vanassche T, Peetermans M, Van Aelst LN, Peetermans WE, Verhaegen J, Missiakas DM, Schneewind O, Hoylaerts MF, Verhamme P (2013) The role of staphylothrombin-mediated fibrin deposition in catheter-related Staphylococcus aureus infections. J Infect Dis 208(1):92–100. https://doi.org/10.1093/infdis/jit130 Vanassche T, Verhaegen J, Peetermans WE, Van Ryn J, Cheng A, Schneewind O, Hoylaerts MF, Verhamme P (2011) Inhibition of staphylothrombin by dabigatran reduces Staphylococcus aureus virulence. J Thromb Haemost : JTH 9(12):2436–2446. https://doi.org/10.1111/j.1538-7836.2011.04529.x Wang L, Li B, Si X, Liu X, Deng X, Niu X, Jin Y, Wang D, Wang J (2019) Quercetin protects rats from catheter-related Staphylococcus aureus infections by inhibiting coagulase activity. J Cell Mol Med 23(7):4808–4818. https://doi.org/10.1111/jcmm.14371 Wang M, Hu J, Zhu L, Guo C, Lu H, Guo C, Li X, Wang X (2017) A fatal suppurative pneumonia in piglets caused by a pathogenic coagulase-positive strain of Staphylococcus hyicus. Vet Res Commun 41(2):139–146. https://doi.org/10.1007/s11259-017-9682-0