Nhắm mục tiêu vào động học ty thể bằng AZD5363 trong các quả cầu tế bào gốc xuất phát từ ung thư vú ba âm tính MDA-MB-231
Tóm tắt
Từ khóa
#ung thư vú #tế bào gốc ung thư vú #động học ty thể #AZD5363 #apoptosisTài liệu tham khảo
Bahmad HF, Cheaito K, Chalhoub RM, Hadadeh O, Monzer A, Ballout F et al (2018) Sphere-formation assay: three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front Oncol 8347. https://doi.org/10.3389/fonc.2018.00347
Bozorgi A, Khazaei M, Khazaei MR (2015) New findings on breast cancer stem cells: a review. J Breast Cancer 18(4):303–312. https://doi.org/10.4048/jbc.2015.18.4.303
Burke PJ (2017) Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 3(12):857–870. https://doi.org/10.1016/j.trecan.2017.10.006
Butti R, Gunasekaran VP, Kumar T, Banerjee P, Kundu GC (2019) Breast cancer stem cells: biology and therapeutic implications. Int J Biochem Cell Biol 107:38–52. https://doi.org/10.1016/j.biocel.2018.12.001
Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26(1):39–48. https://doi.org/10.1016/j.cmet.2017.05.016
Cieśla M, Ngoc P, Cordero E, Martinez ÁS, Morsing M, Muthukumar S et al (2021) Oncogenic translation directs spliceosome dynamics revealing an integral role for SF3A3 in breast cancer. Mol Cell 81(7):1453–1468.e12. https://doi.org/10.1016/j.molcel.2021.01.034
Civenni G, Carbone GM, Catapano CV (2019) Mitochondrial fission and stemness in prostate cancer. Aging (Albany NY) 11(19):8036–8038. https://doi.org/10.18632/aging.102339
Horbay R, Bilyy R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21(12):1327–1335. https://doi.org/10.1007/s10495-016-1295-5
Karabicici M, Alptekin S, Fırtına Karagonlar Z, Erdal E (2021) Doxorubicin-induced senescence promotes stemness and tumorigenicity in EpCAM-/CD133- nonstem cell population in hepatocellular carcinoma cell line, HuH-7. Mol Oncol 15(8):2185–2202. https://doi.org/10.1002/1878-0261.12916
Kumar S, Ashraf R, C K, A. (2021) Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol. https://doi.org/10.1007/s10565-021-09662-5
Naik PP, Panigrahi S, Parida R, Praharaj PP, Bhol CS, Patil S et al (2022) Metabostemness in cancer: linking metaboloepigenetics and mitophagy in remodeling cancer stem cells. Stem Cell Rev Rep 18(1):198–213. https://doi.org/10.1007/s12015-021-10216-9
Pei S, Minhajuddin M, Adane B, Khan N, Stevens BM, Mack SC et al (2018) AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell 23(1):86–100.e6. https://doi.org/10.1016/j.stem.2018.05.021
Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531. https://doi.org/10.1146/annurev-physiol-021115-105011
Schilsky RL, Nass S, Le Beau MM, Benz EJ Jr (2020) Progress in cancer research, prevention, and care. N Engl J Med 383(10):897–900. https://doi.org/10.1056/NEJMp2007839
Sessions DT, Kashatus DF (2021) Mitochondrial dynamics in cancer stem cells. Cell Mol Life Sci 78(8):3803–3816. https://doi.org/10.1007/s00018-021-03773-2
Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166(3):555–566. https://doi.org/10.1016/j.cell.2016.07.002
Wang N, Huang R, Yang K, He Y, Gao Y, Dong D (2022) Interfering with mitochondrial dynamics sensitizes glioblastoma multiforme to temozolomide chemotherapy. J Cell Mol Med 26(3):893–912. https://doi.org/10.1111/jcmm.17147
Weiner-Gorzel K, Murphy M (2021) Mitochondrial dynamics, a new therapeutic target for triple negative breast cancer. Biochim Biophys Acta Rev Cancer 1875(2):188518. https://doi.org/10.1016/j.bbcan.2021.188518
Yang F, Xu J, Tang L, Guan X (2017) Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci 74(6):951–966. https://doi.org/10.1007/s00018-016-2334-7
Zhou TJ, Zhang SL, He CY, Zhuang QY, Han PY, Jiang SW et al (2017) Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1. Theranostics 7(5):1389–1406. https://doi.org/10.7150/thno.17647