Targeting Cholesterol in a Liquid-Disordered Environment by Theonellamides Modulates Cell Membrane Order and Cell Shape

Chemistry & Biology - Tập 22 - Trang 604-610 - 2015
Yuko Arita1, Shinichi Nishimura1, Reiko Ishitsuka2, Takuma Kishimoto2, Junichi Ikenouchi3, Kumiko Ishii2, Masato Umeda3, Shigeki Matsunaga4, Toshihide Kobayashi2, Minoru Yoshida1,5
1Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
2Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
3Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
4Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
5JST CREST, Saitama 351-0198, Japan

Tài liệu tham khảo

Abe, 2012, A role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol-4,5-bisphosphate to the cleavage furrow during cytokinesis, Mol. Cell. Biol., 32, 1396, 10.1128/MCB.06113-11 Baltz, 2009, Daptomycin: mechanisms of action and resistance, and biosynthetic engineering, Curr. Opin. Chem. Biol., 13, 144, 10.1016/j.cbpa.2009.02.031 Bewley, 1994, Theonegramide, an antifungal glycopeptide from the Philippine lithistid sponge Theonella swinhoei, J. Org. Chem., 59, 4849, 10.1021/jo00096a028 Coskun, 2011, Cell membranes: the lipid perspective, Structure, 19, 1543, 10.1016/j.str.2011.10.010 Dinic, 2013, Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains, Biochim. Biophys. Acta, 1828, 1102, 10.1016/j.bbamem.2012.12.004 Drabikow, 1973, Filipin as a fluorescent probe for location of cholesterol in membranes of fragmented sarcoplasmic reticulum, Biochim. Biophys. Acta, 291, 61, 10.1016/0005-2736(73)90060-6 Espiritu, 2013, Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2)H nuclear magnetic resonance, Biochemistry, 52, 2410, 10.1021/bi4000854 Gimpl, 2010, Cholesterol-protein interaction: methods and cholesterol reporter molecules, Subcell. Biochem., 51, 1, 10.1007/978-90-481-8622-8_1 Ho, 2009, A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds, Nat. Biotechnol., 27, 369, 10.1038/nbt.1534 Houdai, 2004, Membrane-permeabilizing activities of amphidinol 3, polyene-polyhydroxy antifungal from a marine dinoflagellate, Biochim. Biophys. Acta, 1667, 91, 10.1016/j.bbamem.2004.09.002 Ikenouchi, 2012, Lipid polarity is maintained in absence of tight junctions, J. Biol. Chem., 287, 9525, 10.1074/jbc.M111.327064 Jin, 2005, Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics, Biophys. J., 89, L04, 10.1529/biophysj.105.064816 Jin, 2006, Characterization and application of a new optical probe for membrane lipid domains, Biophys. J., 90, 2563, 10.1529/biophysj.105.072884 Kahya, 2003, Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy, J. Biol. Chem., 278, 28109, 10.1074/jbc.M302969200 Kenworthy, 2008, Have we become overly reliant on lipid rafts? Talking Point on the involvement of lipid rafts in T-cell activation, EMBO Rep., 9, 531, 10.1038/embor.2008.92 Kobayashi, 1991, Transport of exogenous fluorescent phosphatidylserine analogue to the Golgi apparatus in cultured fibroblasts, J. Cell Biol., 113, 235, 10.1083/jcb.113.2.235 Laganowsky, 2014, Membrane proteins bind lipids selectively to modulate their structure and function, Nature, 510, 172, 10.1038/nature13419 Lee, 2011, Biological membranes: the importance of molecular detail, Trends Biochemical Sciences, 36, 493, 10.1016/j.tibs.2011.06.007 Lingwood, 2010, Lipid rafts as a membrane-organizing principle, Science, 327, 46, 10.1126/science.1174621 Liu, 2006, Actin polymerization serves as a membrane domain switch in model lipid bilayers, Biophys. J., 91, 4064, 10.1529/biophysj.106.090852 Liu, 2008, Membrane-induced bundling of actin filaments, Nat. Phys., 4, 789, 10.1038/nphys1071 Matsunaga, 1995, Theonellamides A-E, cytotoxic bicyclic peptides, from a marine sponge Theonella sp, J. Org. Chem., 60, 1177, 10.1021/jo00110a020 Matsunaga, 1989, Theonellamide-F–a novel antifungal bicyclic peptide from a marine sponge Theonella sp, J. Am. Chem. Soc., 111, 2582, 10.1021/ja00189a035 Miller, 1984, The use and abuse of filipin to localize cholesterol in membranes, Cell Biol. Int. Rep., 8, 519, 10.1016/0309-1651(84)90050-X Morone, 2006, Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography, J. Cell Biol., 174, 851, 10.1083/jcb.200606007 Munro, 2003, Lipid rafts: elusive or illusive?, Cell, 115, 377, 10.1016/S0092-8674(03)00882-1 Murata, 2009, Ion channel complex of antibiotics as viewed by NMR, Pure Appl. Chem., 81, 1123, 10.1351/PAC-CON-08-08-37 Nishimura, 2010, Marine antifungal theonellamides target 3β-hydroxysterol to activate Rho1 signaling, Nat. Chem. Biol., 6, 519, 10.1038/nchembio.387 Nishimura, 2013, Visualization of sterol-rich membrane domains with fluorescently-labeled theonellamides, PLoS One, 8, e83716, 10.1371/journal.pone.0083716 Nishimura, 2014, Balance between exocytosis and endocytosis determines the efficacy of sterol-targeting antibiotics, Chem. Biol., 21, 1690, 10.1016/j.chembiol.2014.10.014 Ohno-Iwashita, 2010, Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization, Subcell. Biochem., 51, 597, 10.1007/978-90-481-8622-8_22 Owen, 2012, Quantitative imaging of membrane lipid order in cells and organisms, Nat. Protoc., 7, 24, 10.1038/nprot.2011.419 Samsonov, 2001, Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes, Biophys. J., 81, 1486, 10.1016/S0006-3495(01)75803-1 Schmidt, 1998, Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei from Palau and Mozambique, J. Org. Chem., 63, 1254, 10.1021/jo9718455 Sharma, 2004, Nanoscale organization of multiple GPI-anchored proteins in living cell membranes, Cell, 116, 577, 10.1016/S0092-8674(04)00167-9 Shimada, 2002, The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains, Eur. J. Biochem., 269, 6195, 10.1046/j.1432-1033.2002.03338.x Simons, 1997, Functional rafts in cell membranes, Nature, 387, 569, 10.1038/42408 Simons, 2004, Model systems, lipid rafts, and cell membranes, Annu. Rev. Biophys. Biomol. Struct., 33, 269, 10.1146/annurev.biophys.32.110601.141803 Singer, 1972, The fluid mosaic model of the structure of cell membranes, Science, 175, 720, 10.1126/science.175.4023.720 Veatch, 2003, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol, Biophys. J., 85, 3074, 10.1016/S0006-3495(03)74726-2 Volmer, 2010, Synthesis and biological evaluation of amphotericin B derivatives, Nat. Prod. Rep., 27, 1329, 10.1039/b820743g Wada, 1999, Theonellamide F, a bicyclic peptide marine toxin, induces formation of vacuoles in 3Y1 rat embryonic fibroblast, Mar. Biotechnol. (NY), 1, 337, 10.1007/PL00011783 Wada, 2002, Accumulation of H+ in vacuoles induced by a marine peptide toxin, theonellamide F, in rat embryonic 3Y1 fibroblasts, Mar. Biotechnol. (NY), 4, 571, 10.1007/s10126-002-0044-7 Waheed, 2001, Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts), Proc. Natl. Acad. Sci. USA, 98, 4926, 10.1073/pnas.091090798 Yamaji, 1998, Lysenin, a novel sphingomyelin-specific binding protein, J. Biol. Chem., 273, 5300, 10.1074/jbc.273.9.5300 Youssef, 2014, Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei, Mar. Drugs, 12, 1911, 10.3390/md12041911