Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)‑poly(ε‑caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid
Tài liệu tham khảo
Huang, 2015, miR-340 suppresses glioblastoma multiforme, Oncotarget, 6, 9257, 10.18632/oncotarget.3288
Alifieries, 2015, Glioblastoma multiforme: pathogenesis and treatment, Pharmacol. Ther., 152, 63, 10.1016/j.pharmthera.2015.05.005
Bouffet, 2016, Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency, J. Clin. Oncol., 34, 2206, 10.1200/JCO.2016.66.6552
Roa, 2015, International atomic energy agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme, J. Clin. Oncol., 33, 4145, 10.1200/JCO.2015.62.6606
Kuo, 2017, Recent advances in the treatment of glioblastoma multiforme by inhibiting angiogenesis and using nanocarrier systems, J. Taiwan Inst. Chem. Eng., 77, 30, 10.1016/j.jtice.2017.04.034
Daniele, 2015, Combined inhibition of AKT/mTOR and MDM2 enhances glioblastoma multiforme cell apoptosis and differentiation of cancer stem cells, Sci. Rep., 5, 9956, 10.1038/srep09956
Martiny-Baron, 1995, VEGF-mediated tumour angiogenesis: a new target for cancer therapy, Curr. Opin. Biotechnol., 6, 675, 10.1016/0958-1669(95)80111-1
Kuo, 2016, Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles, J. Drug Target., 24, 645, 10.3109/1061186X.2015.1132223
Kuo, 2015, Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles, Int. J. Pharm., 479, 138, 10.1016/j.ijpharm.2014.12.070
Hua, 2011, The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas, Biomaterials, 32, 516, 10.1016/j.biomaterials.2010.09.065
Lee, 2008, Effect of gamma irradiation on spleen cell function and cytotoxicity of doxorubicin, Chem. Biol. Interact., 173, 205, 10.1016/j.cbi.2008.03.016
Cui, 2016, Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy, ACS Appl. Mater. Interfaces, 8, 32159, 10.1021/acsami.6b10175
Berezowski, 2004, Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier, Brain Res., 1018, 1, 10.1016/j.brainres.2004.05.092
Golden, 2003, Blood–brain barrier efflux transport, J. Pharm. Sci., 92, 1739, 10.1002/jps.10424
Loscher, 2005, Drug resistance in brain diseases and the role of drug efflux transporters, Nat. Rev. Neurosci., 6, 591, 10.1038/nrn1728
Beduneau, 2007, Active targeting of brain tumors using nanocarriers, Biomaterials, 28, 4947, 10.1016/j.biomaterials.2007.06.011
Abbott, 2006, Astrocyte-endothelial interactions at the blood–brain barrier, Nat. Rev. Neurosci., 7, 41, 10.1038/nrn1824
de Boer, 2007, Drug targeting to the brain, Annu. Rev. Pharmacol. Toxicol., 47, 323, 10.1146/annurev.pharmtox.47.120505.105237
Gutman, 2000, Targeted drug delivery for brain cancer treatment, J. Control. Release, 65, 31, 10.1016/S0168-3659(99)00229-1
Xu, 2006, BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against glioma C6 cells, J. Control. Release, 114, 307, 10.1016/j.jconrel.2006.05.031
Chavanpatil, 2007, Surfactant-polymer nanoparticles overcome P-glycoprotein-mediated drug efflux, Mol. Pharm., 4, 730, 10.1021/mp070024d
Dong, 2004, Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs, Biomaterials, 25, 2843, 10.1016/j.biomaterials.2003.09.055
Kumari, 2010, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B: Biointerfaces, 75, 1, 10.1016/j.colsurfb.2009.09.001
Sinha, 2004, Poly-ε-caprolactone microspheres and nanospheres: an overview, Int. J. Pharm., 278, 1, 10.1016/j.ijpharm.2004.01.044
Dash, 2012, Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review, J. Control. Release, 158, 15, 10.1016/j.jconrel.2011.09.064
Zhang, 2010, A novel paclitaxel-loaded poly(ε-caprolactone)/poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment, Acta Biomater., 6, 2045, 10.1016/j.actbio.2009.11.035
Park, 2005, Folate-conjugated methoxy poly(ethylene glycol)/poly(ɛ-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery, J. Control. Release, 109, 158, 10.1016/j.jconrel.2005.09.039
Araujo, 2010, Characterization of uptake of folates by rat and human blood–brain barrier endothelial cells, Biofactors, 36, 201, 10.1002/biof.82
Wang, 2010, Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells, Int. J. Pharm., 400, 201, 10.1016/j.ijpharm.2010.08.023
Kuo, 2017, Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme, J. Taiwan Inst. Chem. Eng., 77, 73, 10.1016/j.jtice.2017.05.003
He, 2011, PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors, Biomaterials, 32, 478, 10.1016/j.biomaterials.2010.09.002
Dash, 2012, Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review, J. Control. Release, 158, 15, 10.1016/j.jconrel.2011.09.064
Wang, 2011, Nanoparticle carriers based on copolymers of poly(epsilon-caprolactone) and hyperbranched polymers for drug delivery, J. Colloid Interface Sci., 353, 107, 10.1016/j.jcis.2010.09.053
Owens, 2006, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm., 307, 93, 10.1016/j.ijpharm.2005.10.010
Zhou, 2003, Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system, Biomaterials, 24, 3563, 10.1016/S0142-9612(03)00207-2
Rieger, 2007, Mannosylated poly(ethylene oxide)-b-poly(ε-caprolactone) diblock copolymers: synthesis, characterization, and interaction with a bacterial lectin, Biomacromolecules, 8, 2717, 10.1021/bm070342y
Li, 2010, Biodegradable MPEG-g-chitosan and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) composite films: part 1. Preparation and characterization, Carbohydr. Polym., 79, 429, 10.1016/j.carbpol.2009.08.032
Vora, 2002, Thermal stability of folic acid, Thermochim. Acta, 392-393, 209, 10.1016/S0040-6031(02)00103-X
Feng, 2013, Novel star-type methoxy-poly(ethylene glycol) (PEG)-poly(e-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin, J. Nanopart. Res., 15, 1748, 10.1007/s11051-013-1748-5
Kaur, 2015, Wheat germ agglutinin anchored chitosan microspheres of reduced brominated derivative of noscapine ameliorated acute inflammation in experimental colitis, Colloids Surf. B: Biointerfaces, 132, 225, 10.1016/j.colsurfb.2015.05.022
Zhou, 2011, Preparation and characterization of thermosensitive pluronic F127-b-poly(ε-caprolactone) mixed micelles, Colloids Surf. B: Biointerfaces, 86, 45, 10.1016/j.colsurfb.2011.03.013
Snehalatha, 2008, Etoposide loaded plga and PCL nanoparticles II: biodistribution and pharmacokinetics after radiolabeling with Tc-99m, Drug Deliv., 15, 277, 10.1080/10717540802006500
Shen, 2008, Thermosensitive polymer-conjugated albumin nanospheres as thermal targeting anti-cancer drug carrier, Eur. J. Pharm. Sci., 35, 271, 10.1016/j.ejps.2008.07.006
Liu, 2011, In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain, Toxicol. Appl. Pharmacol., 251, 79, 10.1016/j.taap.2010.12.003
Shen, 2011, Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres, Pharmacol. Res., 63, 51, 10.1016/j.phrs.2010.10.012
Hobbs, 1998, Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment, Proc. Natl. Acad. Sci. U. S. A., 95, 4607, 10.1073/pnas.95.8.4607
Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol., 2, 751, 10.1038/nnano.2007.387
Shuai, 2004, Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery, J. Control. Release, 98, 415, 10.1016/j.jconrel.2004.06.003
Manchun, 2012, Targeted therapy for cancer using pH-responsive nanocarrier systems, Life Sci., 90, 381, 10.1016/j.lfs.2012.01.008
Seib, 2013, pH-dependent anticancer drug release from silk nanoparticles, Adv. Healthc. Mater., 2, 1, 10.1002/adhm.201300034
Chawla, 2002, Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, Int. J. Pharm., 249, 127, 10.1016/S0378-5173(02)00483-0
Kuo, 2016, Conjugation of melanotransferrin antibody on solid lipid nanoparticles for mediating brain cancer malignancy, Biotechnol. Prog., 32, 480, 10.1002/btpr.2214
Kuo, 2016, Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation, Int. J. Pharm., 499, 10, 10.1016/j.ijpharm.2015.12.054
Kuo, 2017, Anti-melanotransferrin and apolipoprotein E on doxorubicin-loaded cationic solid lipid nanoparticles for pharmacotherapy of glioblastoma multiforme, J. Taiwan Inst. Chem. Eng., 77, 10, 10.1016/j.jtice.2017.04.026
Kuo, 2017, Targeted delivery of rosmarinic acid across the blood–brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E, Int. J. Pharm., 528, 228, 10.1016/j.ijpharm.2017.05.039
Kuo, 2016, Delivery of doxorubicin to glioblastoma multiforme in vitro using solid lipid nanoparticles with surface aprotinin and melanotransferrin antibody for enhanced chemotherapy, J. Taiwan Inst. Chem. Eng., 61, 32, 10.1016/j.jtice.2015.12.012
Lu, 2002, Folate-mediated delivery of macromolecular anticancer therapeutic agents, Adv. Drug Deliv. Rev., 54, 675, 10.1016/S0169-409X(02)00042-X
Feuser, 2016, Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis, J. Nanopart. Res., 18, 104, 10.1007/s11051-016-3406-1
Kuo, 2015, Inhibition against growth of glioblastoma multiforme in vitro using etoposide-loaded solid lipid nanoparticles with p-aminophenyl-α-d-manno-pyranoside and folic acid, J. Pharm. Sci., 104, 1804, 10.1002/jps.24388
Kuo, 2018, Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons, Mater. Sci. Eng. C, 91, 445, 10.1016/j.msec.2018.05.062
Kuo, 2018, Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain, J. Taiwan Inst. Chem. Eng., 87, 1, 10.1016/j.jtice.2018.03.001