Target volume definition in high-risk prostate cancer patients using sentinel node SPECT/CT and 18 F-choline PET/CT
Tóm tắt
To assess the influence of sentinel lymph nodes (SNs) SPECT/CT and 18 F-choline (18 F-FCH) PET/CT in radiotherapy (RT) treatment planning for prostate cancer patients with a high-risk for lymph node (LN) involvement. Twenty high-risk prostate cancer patients underwent a pelvic SPECT acquisition following a transrectal ultrasound guided injection of 99mTc-Nanocoll into the prostate. In all patients but one an 18 F-FCH PET/CT for RT treatment planning was performed. SPECT studies were coregistered with the respective abdominal CTs. Pelvic SNs localized on SPECT/CT and LN metastases detected by 18 F-FCH PET/CT were compared to standard pelvic clinical target volumes (CTV). A total of 104 pelvic SNs were identified on SPECT/CT (mean 5.2 SNs/patient; range 1–10). Twenty-seven SNs were located outside the standard pelvic CTV, 17 in the proximal common iliac and retroperitoneal regions above S1, 9 in the pararectal fat and 1 in the inguinal region. SPECT/CT succeeded to optimize the definition of the CTV and treatment plans in 6/20 patients due to the presence of pararectal SNs located outside the standard treatment volume. 18 F-FCH PET/CT identified abnormal tracer uptake in the iliac LN region in 2/19 patients. These abnormal LNs were negative on SPECT/CT suggesting a potential blockade of lymphatic drainage by metastatic LNs with a high tumour burden. Multimodality imaging which combines SPECT/CT prostate lymphoscintigraphy and 18 F-FCH PET/CT identified SNs outside standard pelvic CTVs or highly suspicious pelvic LNs in 40% of high-risk prostate cancer patients, highlighting the potential impact of this approach in RT treatment planning.
Tài liệu tham khảo
Roach M 3rd, DeSilvio M, Valicenti R, Grignon D, Asbell SO, Lawton C, Thomas CR Jr, Shipley WU: Whole-pelvis, "mini-pelvis," or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in the Radiation Therapy Oncology Group 9413 trial. Int J Radiat Oncol Biol Phys 2006, 66: 647-653. 10.1016/j.ijrobp.2006.05.074
Roach M 3rd, Bae K, Speight J, Wolkov HB, Rubin P, Lee RJ, Lawton C, Valicenti R, Grignon D, Pilepich MV: Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol 2008, 26: 585-591. 10.1200/JCO.2007.13.9881
Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O'Meara E, Rosenthal SA, Ritter M, Seider M: RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2009, 74: 383-387. 10.1016/j.ijrobp.2008.08.002
Vermeeren L, Meinhardt W, Valdes Olmos RA: Prostatic lymphatic drainage with sentinel nodes at the ventral abdominal wall visualized with SPECT/CT: a case series. Clin Nucl Med 2010, 35: 71-73. 10.1097/RLU.0b013e3181c7c07b
Holl G, Dorn R, Wengenmair H, Weckermann D, Sciuk J: Validation of sentinel lymph node dissection in prostate cancer: experience in more than 2,000 patients. Eur J Nucl Med Mol Imaging 2009, 36: 1377-1382. 10.1007/s00259-009-1157-2
Ganswindt U, Paulsen F, Corvin S, Hundt I, Alber M, Frey B, Stenzl A, Bares R, Bamberg M, Belka C: Optimized coverage of high-risk adjuvant lymph node areas in prostate cancer using a sentinel node-based, intensity-modulated radiation therapy technique. Int J Radiat Oncol Biol Phys 2007, 67: 347-355. 10.1016/j.ijrobp.2006.08.082
Kizu H, Takayama T, Fukuda M, Egawa M, Tsushima H, Yamada M, Ichiyanagi K, Yokoyama K, Onoguchi M, Tonami N: Fusion of SPECT and multidetector CT images for accurate localization of pelvic sentinel lymph nodes in prostate cancer patients. J Nucl Med Technol 2005, 33: 78-82.
Vermeeren L, Valdés Olmos RA, Meinhardt W, Bex A, van der Poel HG, Vogel WV, Sivro F, Hoefnagel CA, Horenblas S: Value of SPECT/CT for detection and anatomic localization of sentinel lymph nodes before laparoscopic sentinel node lymphadenectomy in prostate carcinoma. J Nucl Med 2009, 50: 865-870. 10.2967/jnumed.108.060673
Jadvar H: Prostate cancer: PET with 18 F-FDG, 18 F- or 11C-acetate, and 18 F- or 11C-choline. J Nucl Med 2011, 52: 81-89. 10.2967/jnumed.110.077941
Roach M 3rd, Marquez C, Yuo HS, Narayan P, Coleman L, Nseyo UO, Navvab Z, Carroll PR: Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 1994, 28: 33-37. 10.1016/0360-3016(94)90138-4
Martinez-Monge R, Fernandes PS, Gupta N, Gahbauer R: Cross-sectional nodal atlas: a tool for the definition of clinical target volumes in three-dimensional radiation therapy planning. Radiology 1999, 211: 815-828.
Steiner C, Vees H, Zaidi H, Wissmeyer M, Berrebi O, Kossovsky MP, Khan HG, Miralbell R, Ratib O, Buchegger F: Three-phase 18 F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence. Nuklearmedizin 2009, 48: 1-9.
Krengli M, Ballarè A, Cannillo B, Rudoni M, Kocjancic E, Loi G, Brambilla M, Inglese E, Frea B: Potential advantage of studying the lymphatic drainage by sentinel node technique and SPECT-CT image fusion for pelvic irradiation of prostate cancer. Int J Radiat Oncol Biol Phys 2006, 66: 1100-1104. 10.1016/j.ijrobp.2006.06.047
Wengenmair H, Kopp J, Vogt H, Wawroschek F, Gröber S, Dorn R, Heidenreich P: Sentinel lymph node diagnosis in prostatic carcinoma: II. Biokinetics and dosimetry of 99mTc-Nanocolloid after intraprostatic injection. Nuklearmedizin 2002, 41: 102-107.
Vermeeren L, Meinhardt W, Bex A, van der Poel HG, Vogel WV, Hoefnagel CA, Horenblas S, Valdés Olmos RA: Paraaortic sentinel lymph nodes: toward optimal detection and intraoperative localization using SPECT/CT and intraoperative real-time imaging. J Nucl Med 2010, 51: 376-382. 10.2967/jnumed.109.071779
Rosa M, Chopra HK, Sahoo S: Fine needle aspiration biopsy diagnosis of metastatic prostate carcinoma to inguinal lymph node. Diagn Cytopathol 2007, 35: 565-567. 10.1002/dc.20693
Pilepich MV, Krall JM, Johnson RJ, Sause WT, Perez CA, Zinninger M, Martz K: Extended field (periaortic) irradiation in carcinoma of the prostate–analysis of RTOG 75–06. Int J Radiat Oncol Biol Phys 1986, 12: 345-351. 10.1016/0360-3016(86)90349-4
Zelefsky MJ, Yamada Y, Fuks Z, Zhang Z, Hunt M, Cahlon O, Park J, Shippy A: Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys 2008, 71: 1028-1033. 10.1016/j.ijrobp.2007.11.066
Gutman F, Aflalo-Hazan V, Kerrou K, Montravers F, Grahek D, Talbot JN: 18 F-choline PET/CT for initial staging of advanced prostate cancer. AJR Am J Roentgenol 2006, 187: 618-621. 10.2214/AJR.05.0852
Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, Nader M, Gruy B, Janetschek G, Langsteger W: 18 F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010, 254: 925-933. 10.1148/radiol.09090413