Target RNA motif and target mRNAs of the Quaking STAR protein

Nature Structural and Molecular Biology - Tập 12 Số 8 - Trang 691-698 - 2005
André Galarneau1, Stéphane Richard2
1Terry Fox Molecular Oncology Group, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Oncology, McGill University, Montréal, Québec, Canada, H3T 1E2.
2McGill University Montreal, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hogan, E.L. & Greenfield, S. Animal models of genetic disorders of myelin. in Myelin (ed. Morell, P.) 489–534 (Plenum Press, New York, 1984).

Ebersole, T.A., Chen, Q., Justice, M.J. & Artzt, K. The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Nat. Genet. 12, 260–265 (1996).

Hardy, R.J. et al. Neural cell type-specific expression of QKI proteins is altered in the quaking viable mutant mice. J. Neurosci. 16, 7941–7949 (1996).

Larocque, D. et al. Nuclear retention of MBP mRNAs in the Quaking viable mice. Neuron 36, 815–829 (2002).

Larocque, D. et al. Protection of the p27KIP1 mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nat. Neurosci. 8, 27–33 (2005).

Darnell, R.B. Paraneoplastic neurologic disorders: windows into neuronal function and tumor immunity. Arch. Neurol. 61, 30–32 (2004).

Lukong, K.E. & Richard, S. Sam68, the KH domain-containing superSTAR. Biochim. Biophys. Acta 1653, 73–86 (2003).

Vernet, C. & Artzt, K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 13, 479–484 (1997).

Wu, J.I., Reed, R.B., Grabowski, P.J. & Artzt, K. Function of quaking in myelination: regulation of alternative splicing. Proc. Natl. Acad. Sci. USA 99, 4233–4238 (2002).

Li, Z., Zhang, Y., Li, D. & Feng, Y. Destabilization and mislocalization of the myelin basic protein mRNAs in quaking dysmyelination lacking the Qk1 RNA-binding proteins. J. Neurosci. 20, 4944–4953 (2000).

Saccomanno, L. et al. The STAR protein QKI-6 is a translational repressor. Proc. Natl. Acad. Sci. USA 96, 12605–12610 (1999).

Pilotte, J., Larocque, D. & Richard, S. Nuclear translocation controlled by alternatively spliced isoforms inactivates the QUAKING apoptotic inducer. Genes Dev. 15, 845–858 (2001).

Li, Z. et al. Defective smooth muscle development in qkI-deficient mice. Dev. Growth Differ. 45, 449–462 (2003).

Ryder, S.P., Frater, L.A, Abramovitz, D.L., Goodwin, E.B. & Williamson, J.R. RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat. Struct. Mol. Biol. 11, 20–28 (2004).

Francis, R., Barton, M.K., Kimbel, J. & Schedl, T. Control of oogenesis, germline proliferation and sex determination by the C. elegans gene gld-1. Genetics 139, 579–606 (1995).

Ryder, S.P. & Williamson, J.R. Specificity of the STAR/GSG domain protein Qk1: implications for the regulation of myelination. RNA 10, 1449–1458 (2004).

Buckanovich, R.J. & Darnell, R.B. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol. Cell. Biol. 17, 3194–3201 (1997).

Cox, R.D. et al. Contrasting effects of ENU induced embryonic lethal mutations of the quaking gene. Genomics 57, 333–341 (1999).

Justice, M.J. & Bode, V.C. Three ENU-induced alleles of the murine quaking locus are recessive embryonic lethal mutations. Genet. Res. 51, 95–102 (1988).

Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

Jensen, K.B., Musunuru, K., Lewis, H.A., Burley, S.K. & Darnell, R.B. The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc. Natl. Acad. Sci. USA 97, 5740–5745 (2000).

Nabel-Rosen, H., Volohonsky, G., Reuveny, A., Zaidel-Bar, R. & Volk, T. Two isoforms of the Drosophila RNA binding protein, How, act in opposing directions to regulate tendon cell differentiation. Dev. Cell 2, 183–193 (2002).

Nagarajan, R. et al. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30, 355–368 (2001).

Dennis, G., Jr. et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, 3 (2003).

Rowitch, D.H. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci. 5, 409–419 (2004).

Hardy, R.J. QKI expression is regulated during neuron-glial cell fate decisions. J. Neurosci. Res. 54, 46–57 (1998).

Chen, T., Boisvert, F.M., Bazett-Jones, D.P. & Richard, S. A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines. Mol. Biol. Cell 10, 3015–3033 (1999).

Itoh, M., Haga, I., Li, Q.-H. & Fujisawa, J.-I. Identification of cellular mRNA targets for RNA-binding protein Sam68. Nucleic Acids Res. 30, 5452–5464 (2002).

Keene, J.D. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc. Natl. Acad. Sci. USA 98, 7018–7024 (2001).

Liu, Z. et al. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 294, 1098–1102 (2001).

Jan, E., Motzny, C.K., Graves, L.E. & Goodwin, E.B. The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J. 18, 258–269 (1999).

Chen, T., Côté, J., Carvajal, H.V. & Richard, S. Identification of Sam68 arginine glycine-rich sequences capable of conferring non-specific RNA binding to the GSG domain. J. Biol. Chem. 276, 30803–30811 (2001).

Lee, M.-H. & Schedl, T. Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev. 15, 2408–2420 (2001).

Schumacher, B. et al. Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120, 357–368 (2005).

Min, H., Turck, C.W., Nikolic, J.M. & Black, D.L. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 11, 1023–1036 (1997).

Stoss, O. et al. The STAR/GSG family protein rSLM-2 regulates the selection of alternative splice sites. J. Biol. Chem. 276, 8665–8673 (2001).

Arning, S., Gruter, P., Bilbe, G. & Kramer, A. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 2, 794–810 (1996).

Berglund, J.A., Chua, K., Abovich, N., Reed, R. & Rosbash, M. The splicing factor BBP interacts specifically with the pre-mRNA branch-point sequence UACUAAC. Cell 89, 781–787 (1997).

Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

Butcher, S.E. & Wickens, M. STAR-studded circuitry. Nat. Struct. Mol. Biol. 11, 2–3 (2004).

Hardy, R.J., Lazzarini, R.A., Colman, D.R. & Friedrich, V.L., Jr. Cytoplasmic and nuclear localization of myelin basic proteins reveals heterogeneity among oligodendrocytes. J. Neurosci. Res. 46, 246–257 (1996).

Wu, H.Y., Dawson, M.R.L., Reynolds, R. & Hardy, R.J. Expression of QKI proteins and MAP1B identifies actively myelinating oligodendrocytes in adult rat brain. Mol. Cell. Neurosci. 17, 292–302 (2001).

Baehrecke, E.H. who encodes a KH RNA binding protein that functions in muscle development. Development 124, 1323–1332 (1997).

Zorn, A.M. & Krieg, P.A. The KH domain protein encoded by quaking functions as a dimer and is essential for notochord development in Xenopus embryos. Genes Dev. 11, 2176–2190 (1997).

Zaffran, S., Astier, M., Gratecos, D. & Semeriva, M. The held out wings (how) Drosophila gene encodes a putative RNA binding protein involved in the control of muscular and cardiac activity. Development 124, 2087–2098 (1997).

Jones, A.R., Francis, R. & Schedl, T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev. Biol. 180, 165–183 (1996).

Li, Z.Z. et al. Expression of Hqk encoding a KH RNA binding protein is altered in human glioma. Jpn. J. Cancer Res. 93, 167–177 (2002).

Francis, R., Barton, M.K., Kimble, J. & Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606 (1995).

Galarneau, A., Primeau, M., Trudeau, L.E. & Michnick, S.W. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20, 619–622 (2002).