Tantalum nitride for photocatalytic water splitting: concept and applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bard, A., Fox, M.A.: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995). doi: 10.1021/ar00051a007
Khaselev, O., Turner, J.A.: Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science. 280, 425–427 (1998). doi: 10.1126/science.280.5362.425
Walter, M.G., Warren, E., McKone, J., Boettcher, S., Mi, Q., Santori, E., Lewis, N.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). doi: 10.1021/cr1002326
Ismail, A.A., Bahnemann, D.W.: Photochemical splitting of water for hydrogen production by photocatalysis. Solar Energy Mater. Solar Cells. 128, 85–101 (2014). doi: 10.1016/j.solmat.2014.04.037
Takanabe, K., Domen, K.: Toward visible light response: overall water splitting using heterogeneous photocatalysts. Green 1, 313–322 (2011). doi: 10.1515/GREEN.2011.030
Takanabe, K., Domen, K.: Preparation of inorganic photocatalytic materials for overall water splitting. Chemcatchem. 4, 1485–1497 (2012). doi: 10.1002/cctc.201200324
Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). doi: 10.1038/238037a0
Sivula, K., Le Formal, F., Gratzel, M.: Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4, 432 (2011). doi: 10.1002/cssc.201000416
Barroso, M., Mesa, C.A., Pendlebury, S.R., CowanAJ, Hisatomi T., Sivula, K., Grätzel, M., Klug, D.R., Durrant, J.R.: Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. PNAS 109, 5640 (2012). doi: 10.1073/pnas.1118326109
Abdi, F.F., Han, L., Smets, A., Zeman, M., Dam, B., van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013). doi: 10.1038/ncomms3195
Kim, T.W., Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 (2014). doi: 10.1126/science.1246913
Solarska, R., Jurczakowski, R., Augustynski, J.: A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Nanoscale 4, 1553 (2012). doi: 10.1039/c2nr11573e
Seabold, J.A., Choi, K.S.: Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011). doi: 10.1021/cm1019469
Higashi, M., Domen, K., Abe, R.: Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J. Am. Chem. Soc. 13, 46968 (2012). doi: 10.1021/ja302059g
Kubota, J., Domen, K.: Photocatalytic water splitting using oxynitride and nitride semiconductor powders for production of solar hydrogen. Electrochem. Soc. Interface Summer, 22(2), 57–62 (2013). doi: 10.1149/2.F07132if
Maeda, K., Domen, K.: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007). doi: 10.1021/jp070911w
Chun, W.J., Ishikawa, A., Fujisawa, H., Takata, T., Kondo, J.N., Hara, M., Kawai, M., Matsumoto, Y., Domen, K.: Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798–1803 (2003). doi: 10.1021/jp027593f
Li, Y., Takata, T., Cha, D., Takanabe, K., Minegishi, T., Kubota, J., Domen, K.: Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 25, 125–131 (2013). doi: 10.1002/adma.201202582
Li, Y., Zhang, L., Torres-Pardo, A., Gonzalez-Calbet, J.M., Ma, Y., Oleynikov, P., Terasaki, O., Asahina, S., Shima, M., Cha, D., Zhao, L., Takanabe, K., Kubota, J., Domen, K.: Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. (2013). doi: 10.1038/ncomms3566
Gao, R., Hu, L., Chen, M., Wu, L.: Controllable fabrication and photoelectrochemical property of multilayer tantalum nitride hollow sphere-nanofilms. Small 10, 3038–3044 (2014). doi: 10.1002/smll.201303873
Liu, G., Shi, J., Zhang, F., Chen, Z., Han, J., Ding, C., Chen, S., Wang, Z., Han, H., Li, C.A.: Tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem. Int. Ed. 53, 7295 (2014). doi: 10.1002/anie.201404697
Cong, Y., Park, H.S., Dang, H.X., Fan, F.-R.F., Bard, A.J., Mullins, C.B.: Tantalum cobalt nitride photocatalysts for water oxidation under visible light. Chem. Mater. 24, 579–586 (2012). doi: 10.1021/cm203269n
Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., Ye, J.: Nano-photocatalytic materials: possibilities and challenges. J. Adv. Mater. 24, 229–251 (2012). doi: 10.1002/adma.201102752
Takanabe, K.: Solar water splitting using semiconductor photocatalyst powders. Top Curr. Chem. (2015). doi: 10.1007/128_2015_646 . (In press)
Maeda, K., Domen, K.: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010). doi: 10.1021/jz1007966
Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). doi: 10.1039/B800489G
Abe, R.: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C 11, 179–209 (2010). doi: 10.1016/j.jphotochemrev.2011.02.003
Osterloh, F.E.: Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35 (2008). doi: 10.1021/cm7024203
Osterloh, F.E.: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013). doi: 10.1039/c2cs35266d
Kakuta, N., Park, K.H., Finlayson, M.F., Ueno, A., Bard, A.J., Campion, A., Fox, M.A., Webber, S.E., White, J.M.: Photoassisted hydrogen production using visible light and coprecipitated ZnS·CdS without a noble metal. J. Phys. Chem. 89, 732–734 (1985). doi: 10.1016/j.solmat.2014.04.037
Reber, J.F., Rusek, M.: Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J. Phys. Chem. 90, 824 (1985). doi: 10.1021/j100251a002
Xing, C., Zhang, V., Yan, W., Guo, L.: Band structure-controlled solid solution of Cd1−x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy 31, 2018 (2006). doi: 10.1016/j.ijhydene.2006.02.003
Bao, N., Shen, L., Takata, T., Domen, K.: Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 20, 110 (2008). doi: 10.1021/cm7029344
Matsumura, M., Saho, Y., Tsubomura, H.: Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J. Phys. Chem. 87(20), 3807–3808 (1983). doi: 10.1021/j100243a005
Darwent, J.R., Mills, A.: Photo-oxidation of water sensitized by WO3 powder. J. Chem. Soc. Faraday Trans. 78(2), 359–367 (1982). doi: 10.1039/F29827800359
Erbs, W., Desilvestro, J., Borgarello, E., Gratzel, M.: Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. J. Phys. Chem. 88, 4001–4006 (1984). doi: 10.1021/j150662a028
Hara, M., Hitoki, G., Takata, T., Kondo, J.N., Kobayashi, H., Domen, K.: TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 78, 555–560 (2003). doi: 10.1016/S0920-5861(02)00354-1
Hitoki, G., Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Domen, K.: Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem. Lett. 7, 736–737 (2002). doi: 10.1246/cl.2002.736
Ziani, A., Nurlaela, E., Dhawale, D.S., Silva, D.A., Alarousu, E., Mohammed, O.F., Takanabe, K.: Carrier dynamics of a visible-light responsive Ta3N5 photoanode for water oxidation. Phys. Chem. Chem. Phys. 17, 2670–2677 (2015). doi: 10.1039/c4cp05616g
Ma, S.S.K., Hisatomi, T., Maeda, K., Moriya, Y., Domen, K.: Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J. Am. Chem. Soc. 134, 19993–19996 (2012). doi: 10.1021/ja3095747
Nurlaela, E., Ould-Chikh, S., Harb, M., del Gobbo, S., Aouine, M., Puzenat, E., Sautet, P., Domen, K., Basset, J.-M., Takanabe, K.: Critical role of the semiconductor—electrolyte interface in photocatalytic performance for water-splitting reactions using Ta3N5 particles. Chem. Mater. 26, 4812–4825 (2014). doi: 10.1021/cm502015q
Harb, M., Sautet, P., Nurlaela, E., Raybaud, P., Cavallo, L., Domen, K., Basset, J.-M., Takanabe, K.: Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principle viewpoint. Phys. Chem. Chem. Phy. 16, 20548–20560 (2014). doi: 10.1039/c4cp03594a
Yuliati, L., Yang, J.H., Wang, X., Maeda, K., Takata, T., Antonietti, M., Domen, K.: Highly active tantalum(V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible lght irradiation. J. Mater. Chem. 20, 4295–4298 (2010). doi: 10.1039/C0JM00341G
Fukasawa, Y., Takanabe, K., Shimojima, A., Antonietti, M., Domen, K., Okubo, T.: Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem. Asian J. 6, 103–109 (2011). doi: 10.1002/asia.201000523
Liu, X., Zhao, L., Domen, K., Takanabe, K.: Photocatalytic hydrogen production using visible-light-responsive Ta3N5 photocatalyst supported on monodisperse spherical SiO2 particulates. Mater. Res. Bull. 49, 58–65 (2014). doi: 10.1016/j.materresbull.2013.08.069
Hara, M., Chiba, E., Ishikawa, A., Takata, T., Kondo, J.N., Domen, K.: Ta3N5 and TaON thin films on Ta foil: surface composition and stability. J. Phys. Chem. B 107, 13441–13445 (2003). doi: 10.1021/jp036189t
Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Domen, K.: Electrochemical behavior of thin Ta3N5 semiconductor film. J. Phys. Chem. B 108, 11049–11053 (2004). doi: 10.1021/jp048802u
Li, M., Luo, W., Cao, D., Zhao, X., Li, Z., Yu, T., Zou, Z.: A Co-catalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer. Angew. Chem. Int. Ed. 52, 11016–11020 (2013). doi: 10.1002/anie.201305350
Armytage, D., Fender, B.E.F.: Anion ordering in TaON: a powder neutron-diffraction investigation. Acta Cryst. Sect. B 30(3), 809–812 (1974). doi: 10.1107/S0567740874003761
Dabirian, A., van de Krol, R.: High-temperature ammonolysis of thin film Ta2O5 photoanodes evolution of structural, optical, and photoelectrochemical properties. Chem. Mater. 27, 708–715 (2015). doi: 10.1021/cm503215p
Reuter, K., Scheffler, M.: Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001). doi: 10.1103/PhysRevB.65.035406
Reuter, K., Scheffler, M.: Composition and structure of the RuO2 (110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys. Rev. B 68, 045407 (2003). doi: 10.1103/PhysRevB.68.045407
Henderson, S.J., Hector, A.L.: Structural and compositional variations in Ta3N5 produced by high temperature ammonolysis of tantalum oxide. J. Solid State Chem. 179, 3518–3524 (2006). doi: 10.1016/j.jssc.2006.07.021
Brus, L.E.J.: A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983). doi: 10.1063/1.445676
Ekimov, A.I., Onushchenko, A.A.: Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett. 40, 1136–1139 (1984)
Ho, C.-H., Ke-B, Low, Klie, R.F., Maeda, K., Domen, K., Meyer, R.J., Snee, P.T.: Synthesis and characterization of semiconductor tantalum nitride nanoparticles. J. Phys. Chem. C 115, 647–652 (2011). doi: 10.1021/jp110105u
Gao, Q., Wang, S., Ma, Y., Tang, Y., Giordano, C., Antonietti, M.: SiO2-surface-assisted controllable synthesis of TaON and Ta3N5 nanoparticles for alkene epoxidation. Angew. Chem. Int. Ed. 51, 961–965 (2012). doi: 10.1002/anie.201107216
Pinaud, B.A., Vesborg, P.C.K., Jaramillo, T.F.: Effect of film morphology and thickness on charge transport in Ta3N5/Ta photoanodes for solar water splitting. J. Phys. Chem. C 116, 15918–15924 (2012). doi: 10.1021/jp3041742
Feng, X., La Tempa, T., Basham, J., Mor, G., Varghese, O., Grimes, C.: Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 10, 948–952 (2010). doi: 10.1021/nl903886e
Yokoyama, D., Hashiguchi, H., Maeda, K., Minegishi, T., Takata, T., Abe, R., Kubota, J., Domen, K.: Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films 519, 2087–2092 (2011). doi: 10.1016/j.tsf.2010.10.055
Brese, N., O’Keeffe, M.: The structure of Ta3N5 at 16 K by time-of-flight neutron diffraction. Acta Cryst. C 47, 2291–2294 (1991)
Nurlaela, E., Harb, M., del Gobbo, S., Vashishta, M., Takanabe, K.: Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5. J. Solid State Chem. 229, 219–227 (2015). doi: 10.1016/j.jssc.2015.06.029
Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Rev. B, Phys (2006). doi: 10.1103/PhysRevB.73.045112
Le Bahers, T., Rérat, M., Sautet, P.: Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. J. Phys. Chem. C 118, 5997–6008 (2014)
Morbec, J.M., Narkeviciute, I., Jaramillo, T.F., Galli, G.: Optoelectronic properties of Ta3N5: a joint theoretical and experimental study. Phys. Rev. B 90, 155204 (2014). doi: 10.1103/PhysRevB.90.155204
Watanabe, E., Ushiyama, H., Yamashita, K.: Theoretical studies on the stabilities and reactivities of Ta3N5 (1 0 0) surfaces. Chem. Phys. Lett. 561–562, 57–62 (2013). doi: 10.1016/j.cplett.2012.12.068
Wang, J., Feng, J., Zhang, L., Li, Z., Zou, Z.: Role of oxygen impurity on the mechanical stability and atomic cohesion of Ta3N5 semiconductor photocatalyst. Phys. Chem. Chem. Phys. 16, 15375 (2014). doi: 10.1039/C4CP00120F
Wang, J., Fang, T., Zhang, L., Feng, J., Li, Z., Zou, Z.: Effects of oxygen doping on optical band gap and band edge positions of Ta3N5 photocatalyst: A GGA + U calculation. J. Catal. 309, 291–299 (2014). doi: 10.1016/j.jcat.2013.10.014
Lacomba-Perales, R., Martinez-García, D., Errandonea, D., Le Godec, Y., Philippe, J., Le Marchand, G., Chervin, J.C., Polian, A., Múñoz, A., López-Solano, : Experimental and theoretical investigation of the stability of the monoclinic BaWO4-II phase at high pressure and high temperature. J. Phys. Rev. B 8, 144117 (2010)
Quarti, C., Grancini, G., Mosconi, E., Bruno, P., Ball, J.M., Lee, M.M., Snaith, H.J., Petrozza, A.M., Angelis, F.D.: The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014)
Dabirian, A., Van de Krol, R.: Resonant optical absorption and defect control in Ta3N5 photoanodes. Appl. Phys. Lett. 102, 033905 (2013). doi: 10.1063/1.4788930
Harb, M., Cavallo, L., Basset, J.-M.: Major difference in visible-light photocatalytic features between perfect and self-defective Ta3N5 materials a screened coulomb hybrid DFT investigation. J. Phys. Chem. C 118, 20784–20790 (2014). doi: 10.1021/jp506066p
Khan, S., Zapata, M.J.M., Preira, M.B., Gonçalves, R.V., Strizik, L., Dupont, J., Santos, M.J.L., Teixeira, S.R.: Structural, optical and photoelectrochemical characterizations of monoclinic Ta3N5 thin films. Phys. Chem. Chem. Phys. Accept. (2015). doi: 10.1039/x0xx00000x
Inoue, Y.: Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10°-related electronic configurations. Energy Environ. Sci. 2, 364 (2009). doi: 10.1039/B816677N
Reshak, A.H.: Electronic structure and dispersion of optical function of tantalum nitride as a visible light photo-catalyst. Comp. Mater. Sci. 89, 45 (2014). doi: 10.1016/j.commatsci.2014.03.035
El-Nahass, M.M., Youssef, T.E.: Influence of X-ray irradiation on the optical properties of ruthenium(II)octa-(n-hexyl)-phthalocyanine thin film. J. Alloys Compd 503, 86–91 (2010). doi: 10.1016/j.jallcom.2010.04.029
Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compounds semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). doi: 10.1063/1.1368156
Taguchi, T., Shirafuji, J., Inuishi, Y.: Excitonic emission in cadmium telluride. Phys. Status Solidi B 68, 727–738 (1975). doi: 10.1002/pssb.2220680234
Young, K.F., Frederikse, H.P.R.: Compilation of static dielectric constant of inorganics solids. J. Phys. Chem. Ref. Data 409, 2313 (1973)
Gilleo, M.A., Bailey, P.T., Hill, D.E.: Free-carrier and exciton recombination radiation in GaAs. Phys. Rev. 174, 898–905 (1968). doi: 10.1103/PhysRev.174.898
Adashi, S.: GaAs and related materials. World Scientific Publishing Co. Pte. Ltd, Singapore (1994)
Zeiri, L., Patla, I., Acharya, S., Golan, Y., Efrima, S.: Raman spectroscopy of ultranarrow CdS nanostructures. J. Phys. Chem. C 111, 11843–11848 (2007). doi: 10.1021/jp072015q
Furube A, Maeda K, Domen K Transient absorption study on photogenerated carrier dynamics invisible light responsive photocatalysts GaN:ZnO. Proc of SPIE 2011 8109 810904
Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010). doi: 10.1557/JMR.2010.0020
Esswein, A.J., McMurdo, M.J., Ross, P.N., Bell, A.T., Tilley, T.D.: Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009). doi: 10.1021/jp904022e
Gorlin, Y., Chung, C.-J., Nordlund, D., Clemens, B.M.: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012). doi: 10.1021/cs3003098
Deng, X., Tüysüz, H.: Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. ACS Catal. 4, 3701–3714 (2014). doi: 10.1021/cs500713d
Yeo, B.S., Bell, A.T.: Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011). doi: 10.1021/ja200559j
Liao, M., Feng, J., Luo, W., Wang, Z., Zhang, J., Li, Z., Yu, T., Zou, Z.: Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode. Adv. Funct. Mater. 22, 3066–3074 (2012). doi: 10.1002/adfm.201102966
Kasahara, A., Nukumizu, K., Hitoki, G., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K.: Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A 106, 6750–6753 (2002). doi: 10.1021/jp025961
Higashi, M., Domen, K., Abe, R.: Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. J. Am. Chem. Soc. 135, 10238–10241 (2013). doi: 10.1021/ja404030x
Ran, J., Zhang, J., Yu, J., Jaroniecc, M., Qiao, S.Z.: Earth-abundant cocatalysts for semiconductor based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014). doi: 10.1039/c3cs60425j
Zhong, D.K., Choi, S., Gamelin, D.R.: Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:biVO4. J. Am. Chem. Soc. 133, 18370–18377 (2011). doi: 10.1021/ja207348x
Barroso, M., Cowan, A.J., Pendlebury, S.R., Gratzel, M., Klug, D.R., Durrant, J.R.: The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 1331, 4868–14871 (2011). doi: 10.1021/ja205325v
Long, M., Cai, W., Kisch, H.: Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J. Phys. Chem. C 112, 548–554 (2008). doi: 10.1021/jp075605x
Nurlaela, E., Ould-Chikh, S., Llorens, I., Hazemann, JL., Takanabe, K.: Establishing efficient cobalt based catalytic sites for oxygen evolution on Ta3N5 photocatalyst. Chem. Mater. 27, 5685–5694 (2015). doi: 10.1021/acs.chemmater.5b02139
Shinagawa, T., Takanabe, K.: Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen. Phys. Chem. Chem. Phys. 17, 15111–15114 (2015). doi: 10.1039/c5cp02330k
Shinagawa, T., Takanabe, K.: Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions. J. Phys. Chem. C 119, 20453–20458 (2015). doi: 10.1021/acs.jpcc.5b05295
Shinagawa, T., Takanabe, K.: Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions. J. Power Sources 287, 465–471 (2015). doi: 10.1016/j.jpowsour.2015.04.091
Abdi, F., Savenije, T., May, M., Dam, B., van de Krol, R.: The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752 (2013). doi: 10.1021/jz4013257
Joly, A.G., Williams, J.R., Chambers, S.A., Xiong, G., Hess, W.P., Laman, D.M.: Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J. Appl. Phys. 99, 053521 (2006). doi: 10.1063/1.2177426
Shinde, S.S., Bansode, R.A., Bhosale, C.H., Rajpure, K.Y.: Physical properties of hematite α-Fe2O3 thin films: application to photoelectrochemical solar cells. J. Semicond. 32, 013001 (2011). doi: 10.1088/1674-4926/32/1/013001