Tantalum nitride for photocatalytic water splitting: concept and applications

Ela Nurlaela1, Ahmed Ziani1, Kazuhiro Takanabe1
1KAUST Catalysis Center and Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, 23955-6900, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bard, A., Fox, M.A.: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995). doi: 10.1021/ar00051a007

Khaselev, O., Turner, J.A.: Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science. 280, 425–427 (1998). doi: 10.1126/science.280.5362.425

Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001). doi: 10.1038/35104607

Walter, M.G., Warren, E., McKone, J., Boettcher, S., Mi, Q., Santori, E., Lewis, N.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). doi: 10.1021/cr1002326

Nocera, D.: The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012). doi: 10.1021/ar2003013

Ismail, A.A., Bahnemann, D.W.: Photochemical splitting of water for hydrogen production by photocatalysis. Solar Energy Mater. Solar Cells. 128, 85–101 (2014). doi: 10.1016/j.solmat.2014.04.037

Takanabe, K., Domen, K.: Toward visible light response: overall water splitting using heterogeneous photocatalysts. Green 1, 313–322 (2011). doi: 10.1515/GREEN.2011.030

Takanabe, K., Domen, K.: Preparation of inorganic photocatalytic materials for overall water splitting. Chemcatchem. 4, 1485–1497 (2012). doi: 10.1002/cctc.201200324

Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). doi: 10.1038/238037a0

Sivula, K., Le Formal, F., Gratzel, M.: Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4, 432 (2011). doi: 10.1002/cssc.201000416

Barroso, M., Mesa, C.A., Pendlebury, S.R., CowanAJ, Hisatomi T., Sivula, K., Grätzel, M., Klug, D.R., Durrant, J.R.: Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. PNAS 109, 5640 (2012). doi: 10.1073/pnas.1118326109

Abdi, F.F., Han, L., Smets, A., Zeman, M., Dam, B., van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013). doi: 10.1038/ncomms3195

Kim, T.W., Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 (2014). doi: 10.1126/science.1246913

Solarska, R., Jurczakowski, R., Augustynski, J.: A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Nanoscale 4, 1553 (2012). doi: 10.1039/c2nr11573e

Seabold, J.A., Choi, K.S.: Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011). doi: 10.1021/cm1019469

Higashi, M., Domen, K., Abe, R.: Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J. Am. Chem. Soc. 13, 46968 (2012). doi: 10.1021/ja302059g

Kubota, J., Domen, K.: Photocatalytic water splitting using oxynitride and nitride semiconductor powders for production of solar hydrogen. Electrochem. Soc. Interface Summer, 22(2), 57–62 (2013). doi: 10.1149/2.F07132if

Maeda, K., Domen, K.: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007). doi: 10.1021/jp070911w

Chun, W.J., Ishikawa, A., Fujisawa, H., Takata, T., Kondo, J.N., Hara, M., Kawai, M., Matsumoto, Y., Domen, K.: Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798–1803 (2003). doi: 10.1021/jp027593f

Li, Y., Takata, T., Cha, D., Takanabe, K., Minegishi, T., Kubota, J., Domen, K.: Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 25, 125–131 (2013). doi: 10.1002/adma.201202582

Li, Y., Zhang, L., Torres-Pardo, A., Gonzalez-Calbet, J.M., Ma, Y., Oleynikov, P., Terasaki, O., Asahina, S., Shima, M., Cha, D., Zhao, L., Takanabe, K., Kubota, J., Domen, K.: Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. (2013). doi: 10.1038/ncomms3566

Gao, R., Hu, L., Chen, M., Wu, L.: Controllable fabrication and photoelectrochemical property of multilayer tantalum nitride hollow sphere-nanofilms. Small 10, 3038–3044 (2014). doi: 10.1002/smll.201303873

Liu, G., Shi, J., Zhang, F., Chen, Z., Han, J., Ding, C., Chen, S., Wang, Z., Han, H., Li, C.A.: Tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem. Int. Ed. 53, 7295 (2014). doi: 10.1002/anie.201404697

Cong, Y., Park, H.S., Dang, H.X., Fan, F.-R.F., Bard, A.J., Mullins, C.B.: Tantalum cobalt nitride photocatalysts for water oxidation under visible light. Chem. Mater. 24, 579–586 (2012). doi: 10.1021/cm203269n

Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., Ye, J.: Nano-photocatalytic materials: possibilities and challenges. J. Adv. Mater. 24, 229–251 (2012). doi: 10.1002/adma.201102752

Takanabe, K.: Solar water splitting using semiconductor photocatalyst powders. Top Curr. Chem. (2015). doi: 10.1007/128_2015_646 . (In press)

Maeda, K., Domen, K.: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010). doi: 10.1021/jz1007966

Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). doi: 10.1039/B800489G

Abe, R.: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C 11, 179–209 (2010). doi: 10.1016/j.jphotochemrev.2011.02.003

Osterloh, F.E.: Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35 (2008). doi: 10.1021/cm7024203

Osterloh, F.E.: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013). doi: 10.1039/c2cs35266d

Kakuta, N., Park, K.H., Finlayson, M.F., Ueno, A., Bard, A.J., Campion, A., Fox, M.A., Webber, S.E., White, J.M.: Photoassisted hydrogen production using visible light and coprecipitated ZnS·CdS without a noble metal. J. Phys. Chem. 89, 732–734 (1985). doi: 10.1016/j.solmat.2014.04.037

Reber, J.F., Rusek, M.: Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J. Phys. Chem. 90, 824 (1985). doi: 10.1021/j100251a002

Xing, C., Zhang, V., Yan, W., Guo, L.: Band structure-controlled solid solution of Cd1−x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy 31, 2018 (2006). doi: 10.1016/j.ijhydene.2006.02.003

Bao, N., Shen, L., Takata, T., Domen, K.: Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 20, 110 (2008). doi: 10.1021/cm7029344

Matsumura, M., Saho, Y., Tsubomura, H.: Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J. Phys. Chem. 87(20), 3807–3808 (1983). doi: 10.1021/j100243a005

Darwent, J.R., Mills, A.: Photo-oxidation of water sensitized by WO3 powder. J. Chem. Soc. Faraday Trans. 78(2), 359–367 (1982). doi: 10.1039/F29827800359

Erbs, W., Desilvestro, J., Borgarello, E., Gratzel, M.: Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. J. Phys. Chem. 88, 4001–4006 (1984). doi: 10.1021/j150662a028

Hara, M., Hitoki, G., Takata, T., Kondo, J.N., Kobayashi, H., Domen, K.: TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 78, 555–560 (2003). doi: 10.1016/S0920-5861(02)00354-1

Hitoki, G., Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Domen, K.: Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem. Lett. 7, 736–737 (2002). doi: 10.1246/cl.2002.736

Ziani, A., Nurlaela, E., Dhawale, D.S., Silva, D.A., Alarousu, E., Mohammed, O.F., Takanabe, K.: Carrier dynamics of a visible-light responsive Ta3N5 photoanode for water oxidation. Phys. Chem. Chem. Phys. 17, 2670–2677 (2015). doi: 10.1039/c4cp05616g

Ma, S.S.K., Hisatomi, T., Maeda, K., Moriya, Y., Domen, K.: Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J. Am. Chem. Soc. 134, 19993–19996 (2012). doi: 10.1021/ja3095747

Nurlaela, E., Ould-Chikh, S., Harb, M., del Gobbo, S., Aouine, M., Puzenat, E., Sautet, P., Domen, K., Basset, J.-M., Takanabe, K.: Critical role of the semiconductor—electrolyte interface in photocatalytic performance for water-splitting reactions using Ta3N5 particles. Chem. Mater. 26, 4812–4825 (2014). doi: 10.1021/cm502015q

Harb, M., Sautet, P., Nurlaela, E., Raybaud, P., Cavallo, L., Domen, K., Basset, J.-M., Takanabe, K.: Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principle viewpoint. Phys. Chem. Chem. Phy. 16, 20548–20560 (2014). doi: 10.1039/c4cp03594a

Yuliati, L., Yang, J.H., Wang, X., Maeda, K., Takata, T., Antonietti, M., Domen, K.: Highly active tantalum(V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible lght irradiation. J. Mater. Chem. 20, 4295–4298 (2010). doi: 10.1039/C0JM00341G

Fukasawa, Y., Takanabe, K., Shimojima, A., Antonietti, M., Domen, K., Okubo, T.: Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem. Asian J. 6, 103–109 (2011). doi: 10.1002/asia.201000523

Liu, X., Zhao, L., Domen, K., Takanabe, K.: Photocatalytic hydrogen production using visible-light-responsive Ta3N5 photocatalyst supported on monodisperse spherical SiO2 particulates. Mater. Res. Bull. 49, 58–65 (2014). doi: 10.1016/j.materresbull.2013.08.069

Hara, M., Chiba, E., Ishikawa, A., Takata, T., Kondo, J.N., Domen, K.: Ta3N5 and TaON thin films on Ta foil: surface composition and stability. J. Phys. Chem. B 107, 13441–13445 (2003). doi: 10.1021/jp036189t

Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Domen, K.: Electrochemical behavior of thin Ta3N5 semiconductor film. J. Phys. Chem. B 108, 11049–11053 (2004). doi: 10.1021/jp048802u

Li, M., Luo, W., Cao, D., Zhao, X., Li, Z., Yu, T., Zou, Z.: A Co-catalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer. Angew. Chem. Int. Ed. 52, 11016–11020 (2013). doi: 10.1002/anie.201305350

Armytage, D., Fender, B.E.F.: Anion ordering in TaON: a powder neutron-diffraction investigation. Acta Cryst. Sect. B 30(3), 809–812 (1974). doi: 10.1107/S0567740874003761

Dabirian, A., van de Krol, R.: High-temperature ammonolysis of thin film Ta2O5 photoanodes evolution of structural, optical, and photoelectrochemical properties. Chem. Mater. 27, 708–715 (2015). doi: 10.1021/cm503215p

Reuter, K., Scheffler, M.: Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001). doi: 10.1103/PhysRevB.65.035406

Reuter, K., Scheffler, M.: Composition and structure of the RuO2 (110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys. Rev. B 68, 045407 (2003). doi: 10.1103/PhysRevB.68.045407

Henderson, S.J., Hector, A.L.: Structural and compositional variations in Ta3N5 produced by high temperature ammonolysis of tantalum oxide. J. Solid State Chem. 179, 3518–3524 (2006). doi: 10.1016/j.jssc.2006.07.021

Brus, L.E.J.: A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983). doi: 10.1063/1.445676

Ekimov, A.I., Onushchenko, A.A.: Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett. 40, 1136–1139 (1984)

Ho, C.-H., Ke-B, Low, Klie, R.F., Maeda, K., Domen, K., Meyer, R.J., Snee, P.T.: Synthesis and characterization of semiconductor tantalum nitride nanoparticles. J. Phys. Chem. C 115, 647–652 (2011). doi: 10.1021/jp110105u

Gao, Q., Wang, S., Ma, Y., Tang, Y., Giordano, C., Antonietti, M.: SiO2-surface-assisted controllable synthesis of TaON and Ta3N5 nanoparticles for alkene epoxidation. Angew. Chem. Int. Ed. 51, 961–965 (2012). doi: 10.1002/anie.201107216

Pinaud, B.A., Vesborg, P.C.K., Jaramillo, T.F.: Effect of film morphology and thickness on charge transport in Ta3N5/Ta photoanodes for solar water splitting. J. Phys. Chem. C 116, 15918–15924 (2012). doi: 10.1021/jp3041742

Feng, X., La Tempa, T., Basham, J., Mor, G., Varghese, O., Grimes, C.: Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 10, 948–952 (2010). doi: 10.1021/nl903886e

Yokoyama, D., Hashiguchi, H., Maeda, K., Minegishi, T., Takata, T., Abe, R., Kubota, J., Domen, K.: Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films 519, 2087–2092 (2011). doi: 10.1016/j.tsf.2010.10.055

Brese, N., O’Keeffe, M.: The structure of Ta3N5 at 16 K by time-of-flight neutron diffraction. Acta Cryst. C 47, 2291–2294 (1991)

Nurlaela, E., Harb, M., del Gobbo, S., Vashishta, M., Takanabe, K.: Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5. J. Solid State Chem. 229, 219–227 (2015). doi: 10.1016/j.jssc.2015.06.029

Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Rev. B, Phys (2006). doi: 10.1103/PhysRevB.73.045112

Le Bahers, T., Rérat, M., Sautet, P.: Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. J. Phys. Chem. C 118, 5997–6008 (2014)

Morbec, J.M., Narkeviciute, I., Jaramillo, T.F., Galli, G.: Optoelectronic properties of Ta3N5: a joint theoretical and experimental study. Phys. Rev. B 90, 155204 (2014). doi: 10.1103/PhysRevB.90.155204

Watanabe, E., Ushiyama, H., Yamashita, K.: Theoretical studies on the stabilities and reactivities of Ta3N5 (1 0 0) surfaces. Chem. Phys. Lett. 561–562, 57–62 (2013). doi: 10.1016/j.cplett.2012.12.068

Wang, J., Feng, J., Zhang, L., Li, Z., Zou, Z.: Role of oxygen impurity on the mechanical stability and atomic cohesion of Ta3N5 semiconductor photocatalyst. Phys. Chem. Chem. Phys. 16, 15375 (2014). doi: 10.1039/C4CP00120F

Wang, J., Fang, T., Zhang, L., Feng, J., Li, Z., Zou, Z.: Effects of oxygen doping on optical band gap and band edge positions of Ta3N5 photocatalyst: A GGA + U calculation. J. Catal. 309, 291–299 (2014). doi: 10.1016/j.jcat.2013.10.014

Lacomba-Perales, R., Martinez-García, D., Errandonea, D., Le Godec, Y., Philippe, J., Le Marchand, G., Chervin, J.C., Polian, A., Múñoz, A., López-Solano, : Experimental and theoretical investigation of the stability of the monoclinic BaWO4-II phase at high pressure and high temperature. J. Phys. Rev. B 8, 144117 (2010)

Quarti, C., Grancini, G., Mosconi, E., Bruno, P., Ball, J.M., Lee, M.M., Snaith, H.J., Petrozza, A.M., Angelis, F.D.: The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014)

Dabirian, A., Van de Krol, R.: Resonant optical absorption and defect control in Ta3N5 photoanodes. Appl. Phys. Lett. 102, 033905 (2013). doi: 10.1063/1.4788930

Harb, M., Cavallo, L., Basset, J.-M.: Major difference in visible-light photocatalytic features between perfect and self-defective Ta3N5 materials a screened coulomb hybrid DFT investigation. J. Phys. Chem. C 118, 20784–20790 (2014). doi: 10.1021/jp506066p

Khan, S., Zapata, M.J.M., Preira, M.B., Gonçalves, R.V., Strizik, L., Dupont, J., Santos, M.J.L., Teixeira, S.R.: Structural, optical and photoelectrochemical characterizations of monoclinic Ta3N5 thin films. Phys. Chem. Chem. Phys. Accept. (2015). doi: 10.1039/x0xx00000x

Inoue, Y.: Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10°-related electronic configurations. Energy Environ. Sci. 2, 364 (2009). doi: 10.1039/B816677N

Reshak, A.H.: Electronic structure and dispersion of optical function of tantalum nitride as a visible light photo-catalyst. Comp. Mater. Sci. 89, 45 (2014). doi: 10.1016/j.commatsci.2014.03.035

El-Nahass, M.M., Youssef, T.E.: Influence of X-ray irradiation on the optical properties of ruthenium(II)octa-(n-hexyl)-phthalocyanine thin film. J. Alloys Compd 503, 86–91 (2010). doi: 10.1016/j.jallcom.2010.04.029

Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compounds semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). doi: 10.1063/1.1368156

Taguchi, T., Shirafuji, J., Inuishi, Y.: Excitonic emission in cadmium telluride. Phys. Status Solidi B 68, 727–738 (1975). doi: 10.1002/pssb.2220680234

Young, K.F., Frederikse, H.P.R.: Compilation of static dielectric constant of inorganics solids. J. Phys. Chem. Ref. Data 409, 2313 (1973)

Gilleo, M.A., Bailey, P.T., Hill, D.E.: Free-carrier and exciton recombination radiation in GaAs. Phys. Rev. 174, 898–905 (1968). doi: 10.1103/PhysRev.174.898

Madelung, O.: Semiconductors: data handbook, 3rd edn. Springer, New York (2004)

Adashi, S.: GaAs and related materials. World Scientific Publishing Co. Pte. Ltd, Singapore (1994)

Zeiri, L., Patla, I., Acharya, S., Golan, Y., Efrima, S.: Raman spectroscopy of ultranarrow CdS nanostructures. J. Phys. Chem. C 111, 11843–11848 (2007). doi: 10.1021/jp072015q

Furube A, Maeda K, Domen K Transient absorption study on photogenerated carrier dynamics invisible light responsive photocatalysts GaN:ZnO. Proc of SPIE 2011 8109 810904

Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010). doi: 10.1557/JMR.2010.0020

Esswein, A.J., McMurdo, M.J., Ross, P.N., Bell, A.T., Tilley, T.D.: Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009). doi: 10.1021/jp904022e

Gorlin, Y., Chung, C.-J., Nordlund, D., Clemens, B.M.: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012). doi: 10.1021/cs3003098

Deng, X., Tüysüz, H.: Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. ACS Catal. 4, 3701–3714 (2014). doi: 10.1021/cs500713d

Yeo, B.S., Bell, A.T.: Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011). doi: 10.1021/ja200559j

Liao, M., Feng, J., Luo, W., Wang, Z., Zhang, J., Li, Z., Yu, T., Zou, Z.: Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode. Adv. Funct. Mater. 22, 3066–3074 (2012). doi: 10.1002/adfm.201102966

Kasahara, A., Nukumizu, K., Hitoki, G., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K.: Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A 106, 6750–6753 (2002). doi: 10.1021/jp025961

Higashi, M., Domen, K., Abe, R.: Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. J. Am. Chem. Soc. 135, 10238–10241 (2013). doi: 10.1021/ja404030x

Ran, J., Zhang, J., Yu, J., Jaroniecc, M., Qiao, S.Z.: Earth-abundant cocatalysts for semiconductor based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014). doi: 10.1039/c3cs60425j

Zhong, D.K., Choi, S., Gamelin, D.R.: Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:biVO4. J. Am. Chem. Soc. 133, 18370–18377 (2011). doi: 10.1021/ja207348x

Barroso, M., Cowan, A.J., Pendlebury, S.R., Gratzel, M., Klug, D.R., Durrant, J.R.: The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 1331, 4868–14871 (2011). doi: 10.1021/ja205325v

Long, M., Cai, W., Kisch, H.: Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J. Phys. Chem. C 112, 548–554 (2008). doi: 10.1021/jp075605x

Nurlaela, E., Ould-Chikh, S., Llorens, I., Hazemann, JL., Takanabe, K.: Establishing efficient cobalt based catalytic sites for oxygen evolution on Ta3N5 photocatalyst. Chem. Mater. 27, 5685–5694 (2015). doi: 10.1021/acs.chemmater.5b02139

Shinagawa, T., Takanabe, K.: Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen. Phys. Chem. Chem. Phys. 17, 15111–15114 (2015). doi: 10.1039/c5cp02330k

Shinagawa, T., Takanabe, K.: Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions. J. Phys. Chem. C 119, 20453–20458 (2015). doi: 10.1021/acs.jpcc.5b05295

Shinagawa, T., Takanabe, K.: Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions. J. Power Sources 287, 465–471 (2015). doi: 10.1016/j.jpowsour.2015.04.091

Abdi, F., Savenije, T., May, M., Dam, B., van de Krol, R.: The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752 (2013). doi: 10.1021/jz4013257

Joly, A.G., Williams, J.R., Chambers, S.A., Xiong, G., Hess, W.P., Laman, D.M.: Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J. Appl. Phys. 99, 053521 (2006). doi: 10.1063/1.2177426

Shinde, S.S., Bansode, R.A., Bhosale, C.H., Rajpure, K.Y.: Physical properties of hematite α-Fe2O3 thin films: application to photoelectrochemical solar cells. J. Semicond. 32, 013001 (2011). doi: 10.1088/1674-4926/32/1/013001

Nurlaela, E., Shinagawa, T., Qureshi, M., Dhawale, D.S., Takanabe, K.: Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide. ACS Catal. 6, 1713 (2016). doi: 10.1021/acscatal.5b02804