Tannin-based carbon foams

Carbon - Tập 47 - Trang 1480-1492 - 2009
G. Tondi1, V. Fierro2, A. Pizzi1, A. Celzard2,3
1LERMAB – ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal Cédex 9, France
2Institut Jean Lamour – UMR CNRS 7198, CNRS – Nancy-Université – UPV-Metz, Département Chimie et Physique des Solides et des Surfaces, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
3Institut Jean Lamour – UMR CNRS 7198, CNRS – Nancy-Université – UPV-Metz, Département Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue de Merle Blanc, BP 1041, 88051 Épinal Cedex 9, France

Tài liệu tham khảo

Job, 2004, Porous carbon xerogels with texture tailored by pH control during sol–gel process, Carbon, 42, 619, 10.1016/j.carbon.2003.12.072 Biesmans, 1998, Polyurethane based organic aerogels and their transformation into carbon aerogels, J Non-Cryst Solids, 225, 64, 10.1016/S0022-3093(98)00010-6 Chen, 2006, Carbon foam derived from various precursors, Carbon, 44, 1535, 10.1016/j.carbon.2005.12.021 Uher, 1983, Unusual temperature dependence of the resistivity of exfoliated graphites, Phys Rev B, 27, 1326, 10.1103/PhysRevB.27.1326 Kokon, 2006, Les aérogels et les structures alvéolaires, deux exemples de mousses de carbone, Actualité Chimique, 295–296, 119 Sourdiaucourt P, Derré A, Cosculluela A, Lulewicz JD, Delhaès P, David P, Piquero T. Effects of processing conditions on properties of carbon foam. Extended abstracts. Carbon 2003 [Oviedo]. Klett, 2000, High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties, Carbon, 38, 953, 10.1016/S0008-6223(99)00190-6 Prabhakaran, 2007, Processing of sucrose to low density carbon foams, J Mater Sci, 42, 3894, 10.1007/s10853-006-0481-1 Harikrishnan, 2007, Reticulated vitreous carbon from polyurethane foam-clay composites, Carbon, 45, 531, 10.1016/j.carbon.2006.10.019 Meikleham, 1994, Acid- and alkali-catalyzed tannin-based rigid foams, J Appl Polym Sci, 53, 1547, 10.1002/app.1994.070531117 Tondi G. Polyflavonoid foams and derived carbonaceous materials, vol. 1. PhD Thesis, University of Nancy; 2007. Tondi G, Pizzi A. Tannin-based rigid foams: Characterization and modification, Ind Crops Prod; in press, doi:10.1016/j.indcrop.2008.07.003. Tondi, 2008, Structure degradation, conservation and rearrangement in the carbonisation of polyflavonoid tannin/furanic rigid foams – a MALDI-ToF investigation, Polym Degrad Stab, 93, 968, 10.1016/j.polymdegradstab.2008.01.024 Tondi, 2008, MALDI-ToF investigation of furanic polymer foams before and after carbonization: aromatic rearrangement and surviving furanic structures, Eur Polym J, 44, 2938, 10.1016/j.eurpolymj.2008.06.029 Tondi, 2008, Analysis of gases emitted during carbonization of polyflavonoid tannin/furanic rigid foams, Polym Deg Stab, 93, 1539, 10.1016/j.polymdegradstab.2008.05.016 Krzesinska, 2006, Elastic properties and electrical conductivity of mica/expanded graphite nanocomposites, Mater Chem Phys, 97, 173, 10.1016/j.matchemphys.2005.08.003 Krzesinska, 2001, Elastic properties of anisotropic monolithic samples of compressed expanded graphite studied with ultrasounds, J Mater Res, 16, 606, 10.1557/JMR.2001.0087 Py, 2001, Parrafin/porous–graphite-matrix composite as a high and constant power thermal storage material, J Heat Mass Transfer, 44, 2727, 10.1016/S0017-9310(00)00309-4 Celzard, 2002, Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance, J Power Sources, 108, 153, 10.1016/S0378-7753(02)00030-7 Ahern, 2005, The conductivity of foams: a generalisation of the electrical to the thermal case, Coll Surf A: Physicochem Eng Aspects, 263, 275, 10.1016/j.colsurfa.2005.01.026 Klett J, Klett L, Hardy R, Burchell T, Walls C. Graphitic foam thermal management materials for electronic packaging. Extended abstracts. Soc Automotive Eng Future Car Congress, Crystal City, Washington DC, April 2–6; 2000. Poco graphite, Inc., 1601 South State Street, Decatur, TX 76234, USA. Poco foams datasheet. Gallego, 2003, Carbon foams for thermal management, Carbon, 41, 1461, 10.1016/S0008-6223(03)00091-5 Dharmasena, 2002, Electrical conductivity of open-cell metal foams, J Mater Res, 17, 625, 10.1557/JMR.2002.0089 Babcsan, 2003, Thermal and electrical conductivity measurements on aluminium foams, Materialwiss Werkstofftech, 34, 391, 10.1002/mawe.200390081 Ashby, 2006, The properties of foams and lattices, Phil Trans R Soc A, 364, 15, 10.1098/rsta.2005.1678 Klett, 2004, The role of structure on the thermal properties of graphitic foams, J Mater Sci, 39, 3659, 10.1023/B:JMSC.0000030719.80262.f8 Gupta, 2006, Characterization of mechanical and electrical properties of epoxy-glass microballoon syntactic composites, Ferroelectrics, 345, 1, 10.1080/00150190601018002 De Gennes, 1978, Lois générales pour l’injection d’un fluide dans un milieu poreux aléatoire, J Méc, 17, 403 Chatzis, 1977, Modelling pore structure by 2-D and 3-D networks with applications to sandstones, J Can Petrol Technol, 16, 97, 10.2118/77-01-09 Thompson, 1987, Mercury injection in porous media: A resistance devil’s staircase with percolation geometry, Phys Rev Lett, 58, 29, 10.1103/PhysRevLett.58.29 Peng, 2000, Microstructure of ceramic foams, J Eur Ceram Soc, 20, 807, 10.1016/S0955-2219(99)00229-0 Rogers DK, Plucinski J. Low-cost carbon foams for thermal protection and reinforcement applications. Extended abstracts. In 45th international SAMPE symposium, May 21–25; 2000. Gibson, 1997 El-Baradie, 2005, Pore-size effect on the properties of open-cell Al–Ni foam, Mater Res Innovations, 9, 19, 10.1080/14328917.2005.11784874 Kim, 2005, Evaluation of compressive mechanical properties of Al-foams using electrical conductivity, Compos Struct, 71, 191, 10.1016/j.compstruct.2004.10.016 Stein, 1975, Physico-chemical approaches to the measurement of anisotropy Doermann, 1996, Heat transfer in open-cell foam insulation, J Heat Transfer, 118, 88, 10.1115/1.2824072 Celzard, 2003, Describing the properties of compressed expanded graphite through power laws, J Phys Condens Matter, 15, 7213, 10.1088/0953-8984/15/43/006 Zhao, 2004, Thermal radiation in ultralight metal foams with open cells, Int J Heat Mass Transfer, 47, 2927, 10.1016/j.ijheatmasstransfer.2004.03.006 Gibson, 2000, Mechanical behavior of metallic foams, Ann Rev Mater, 30, 191, 10.1146/annurev.matsci.30.1.191 Celzard, 2002, Fluid flow in highly porous anisotropic graphites, J Phys Condens Matter, 14, 1119, 10.1088/0953-8984/14/6/301 Scheidegger, 1974 Bastick, 1965, La texture des carbones, vol. 2, 208 Tummala R, Rymaszewski E, Klopfenstein A. Microelectronics packaging handbook. Book I: technology drivers. Van Nostrand Reinhold; 1997. Huber, 1988, Anisotropy of foams, J Mater Sci, 23, 3031, 10.1007/BF00547486