Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling

Nature - Tập 461 Số 7264 - Trang 614-620 - 2009
Shih-Min A. Huang1, Yuji Mishina1, Shanming Liu1, Atwood K. Cheung1, Frank Stegmeier1, Gregory A. Michaud1, Olga Charlat1, Elizabeth L. Wiellette1, Yue Zhang1, Stephanie Wiessner1, Marc Hild1, Xiaoying Shi1, Christopher J. Wilson1, Craig Mickanin1, Vic E. Myer1, Aleem Fazal1, Ronald Tomlinson1, Fabrizio C. Serluca1, Wenlin Shao1, Hong Cheng1, Michael D. Shultz1, Christina Rau2, Markus Schirle3, Judith Schlegl2, Sonja Ghidelli2, Stephen E. Fawell1, Chris X. Lu1, Daniel Curtis1, Marc W. Kirschner4, Christoph Lengauer3, Peter M. Finan1, John A. Tallarico1, Tewis Bouwmeester3, Jeffery A. Porter1, Andreas Bauer3, Feng Cong1
1Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA ,
2Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
3Novartis (Switzerland), Basel, Switzerland
4Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006)

Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev. 17, 45–51 (2007)

Barker, N. & Clevers, H. Mining the Wnt pathway for cancer therapeutics. Nature Rev. Drug Discov. 5, 997–1014 (2006)

Miyaki, M. et al. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54, 3011–3020 (1994)

Mori, Y. et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233 (1992)

Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992)

Salic, A., Lee, E., Mayer, L. & Kirschner, M. W. Control of β-catenin stability: reconstitution of the cytoplasmic steps of the Wnt pathway in Xenopus egg extracts. Mol. Cell 5, 523–532 (2000)

Lee, E., Salic, A., Kruger, R., Heinrich, R. & Kirschner, M. W. The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1, E10 (2003)

Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 (1998)

Kishida, M. et al. Axin prevents Wnt-3a-induced accumulation of β-catenin. Oncogene 18, 979–985 (1999)

Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol. 8, 573–581 (1998)

Leung, J. Y. et al. Activation of AXIN2 expression by β-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J. Biol. Chem. 277, 21657–21665 (2002)

Willert, K., Shibamoto, S. & Nusse, R. Wnt-induced dephosphorylation of axin releases β-catenin from the axin complex. Genes Dev. 13, 1768–1773 (1999)

Donawho, C. K. et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 13, 2728–2737 (2007)

Poss, K. D., Shen, J. & Keating, M. T. Induction of lef1 during zebrafish fin regeneration. Dev. Dyn. 219, 282–286 (2000)

Stoick-Cooper, C. L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479–489 (2007)

Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chem. Biol. 5, 100–107 (2009)

Hsiao, S. J. & Smith, S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90, 83–92 (2008)

Sbodio, J. I., Lodish, H. F. & Chi, N. W. Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase). Biochem. J. 361, 451–459 (2002)

Yeh, T.-Y. et al. Tankyrase recruitment to the lateral membrane in polarized epithelial cells: regulation by cell–cell contact and protein poly(ADP-ribosyl)ation. Biochem. J. 399, 415–425 (2006)

Chang, W., Dynek, J. N. & Smith, S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17, 1328–1333 (2003)

Chang, P., Coughlin, M. & Mitchison, T. J. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nature Cell Biol. 7, 1133–1139 (2005)

Dynek, J. N. & Smith, S. Resolution of sister telomere association is required for progression through mitosis. Science 304, 97–100 (2004)

Winston, J. T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro . Genes Dev. 13, 270–283 (1999)

Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001)

Hsiao, S. J., Poitras, M. F., Cook, B. D., Liu, Y. & Smith, S. Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping. Mol. Cell. Biol. 26, 2044–2054 (2006)

Chiang, Y. J. et al. Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development. PLoS ONE 3, e2639 (2008)

Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnol. 25, 1035–1044 (2007)

Bantscheff, M. et al. Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol. Cell. Proteomics 7, 1702–1713 (2008)