Tandem determination of mitoxantrone and ribonucleic acid using mercaptosuccinic acid-capped CdTe quantum dots
Tài liệu tham khảo
Cai, 2011, Determination of lysozyme at the nanogram level in chicken egg white using resonance Ray leigh-scattering method with Cd-doped ZnSe quantum dots as probe, Sens. Actuators, B157, 368, 10.1016/j.snb.2011.04.058
Kairdolf, 2013, Semiconductor quantum dots for bioimaging and biodiagnostic applications, Annu. Rev. Anal. Chem., 6, 143, 10.1146/annurev-anchem-060908-155136
Jr, 1998, Semiconductor nanocrystals as fluorescent biological labels, Science, 281, 2013, 10.1126/science.281.5385.2013
Chan, 1998, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 281, 2016, 10.1126/science.281.5385.2016
Peng, 2000, Shape control of CdSe nanocrystals, Nature, 404, 59, 10.1038/35003535
Ying, 2008, Synthesis and bioimaging application of highly luminescent mercaptosuccinicacid coated CdTe nanocrystals, PLoS One, 3, e2222, 10.1371/journal.pone.0002222
Shim, 1994, Simultaneous determination of a new anthracycline, DA-125, and its metabolites M1 M2,M3 and M4 in plasma and urine by high-performance liquid chromatography, J. Chromatogr. B: Biomed. Sci. Appl., 656, 407, 10.1016/0378-4347(94)00105-7
Gavenda, 2001, Determination of anthracycline antibiotics doxorubicin and daunorubicin by capillary electrophoresis with UV absorption detection, Electrophoresis, 22, 2782, 10.1002/1522-2683(200108)22:13<2782::AID-ELPS2782>3.0.CO;2-I
Liu, 2007, Rapid high throughput assay for fluorimetric detection of doxorubicin–application of nucleic acid-dyebioprobe, Anal. Chim. Acta, 587, 47, 10.1016/j.aca.2007.01.013
Vajdle, 2014, Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine, Electrochim. Acta, 132, 49, 10.1016/j.electacta.2014.03.124
Liao, 2005, Spectroscopic and viscosity study of doxorubicin interaction with DNA, J. Mol. Struct., 749, 108, 10.1016/j.molstruc.2005.04.007
Yan, 1997, Interaction of doxorubicin and its derivatives with DNA: elucidation by resonance Raman andsurface-enhanced resonance Raman spectroscopy, Biospectroscopy, 3, 307, 10.1002/(SICI)1520-6343(1997)3:4<307::AID-BSPY6>3.0.CO;2-0
Gopinath, 2005, Human vault-associated non-coding RNAs bind to mitoxantrone, a chemotherapeutic compound, Nucleic Acids Res., 33, 4874, 10.1093/nar/gki809
IV, 2009, Comparison and evaluation of RNA quantification methods using viral, prokaryotic, and eukaryotic RNA over a 104 concentration range, Anal. Biochem., 387, 122, 10.1016/j.ab.2009.01.003
Adegoke, 2016, Gradient band gap engineered alloyed quaternary/ ternary CdZnSeS/ZnSeS quantum dots: an ultrasensitive fluorescence reporter in a conjugated molecular beacon system for the biosensing of influenza virus RNA, J. Mater. Chem. B, 4, 1489, 10.1039/C5TB02449H
Darmanis, 2016, Simultaneous multiplexed measurement of RNA and proteins in single cells, Cell Rep., 14, 380, 10.1016/j.celrep.2015.12.021
Jones, 1998, RNA quantitation by fluorescence-based solution assay: ribogreen reagent characterization, Anal. Biochem, 265, 368, 10.1006/abio.1998.2914
Elsholz, 2006, Automated detection and quantitation of bacterial RNA by using electrical microarrays, Anal. Chem., 78, 4794, 10.1021/ac0600914
Ray, 2016, Deciphering molecular aspects of interaction between anticancer drug mitoxantrone and tRNA, J. Biomol. Struct. Latest Artic., 1
Jiang, 2016, A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters, Sens. Actuators B, 232, 276, 10.1016/j.snb.2016.03.100
Huang, 2014, A sensitive quantum dots-based “OFF-ON” fluorescent sensor for ruthenium anticancer drugs and ctDNA, Colloids Surf. B, 117, 240, 10.1016/j.colsurfb.2014.02.031
Ertas, 2015, l-Cysteine capped Mn-doped ZnS quantum dots as a room temperature phosphorescence sensor for in-vitro binding assay of idarubicin and DNA, Biosens. Bioelectron., 70, 345, 10.1016/j.bios.2015.03.055
Zhao, 2014, “Turnoff–on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots, Biosens. Bioelectron., 52, 29, 10.1016/j.bios.2013.08.031
Li, 2011, A sensitive sensor for anthraquinone anticancer drugs and hsDNA based on CdTe/CdS quantum dots fluorescence reversible control, Colloids Surf. A, 392, 7, 10.1016/j.colsurfa.2011.08.037
Alibolandi, 2014, Synthesis of AS1411-Aptamer-Conjugated CdTe Quantum Dots with High Fluorescence Strength for Probe Labeling Tumor Cells, J. Fluoresc., 24, 1519, 10.1007/s10895-014-1437-5
Zhao, 2013, Luminescent ZnO quantum dots for sensitive and selective detection of dopamine, Talanta, 107, 133, 10.1016/j.talanta.2013.01.006
Gong, 2014, Melamine-modulated mercaptopropionic acid-capped manganese doped zinc sulfide quantum dots as a room-temperature phosphorescence sensor for detecting clenbuterol in biological fluids, Sens. Actuators B, 202, 638, 10.1016/j.snb.2014.05.134
Ying, 2014, Simple and sensitive detection method for diprophylline using glutathione-capped CdTe quantum dots as fluorescence probes, J. Lumin., 145, 575, 10.1016/j.jlumin.2013.08.023
Li, 2009, A Modified Method using TRIzol® Reagent and Liquid Nitrogen Produces High-Quality RNA from Rat Pancreas, Appl. Biochem. Biotechnol., 158, 253, 10.1007/s12010-008-8391-0
Available at: 〈http://eng.bioneer.com/products/dnarnaprep/AccZol-TotalRNAExtractionSolution-technical.aspx〉.
Sorouraddin, 2014, A new fluorimetric method for determination of valproic acid using TGA-capped CdTe quantum dots as proton sensor, J. Lumin., 145, 253, 10.1016/j.jlumin.2013.07.025
Chao, 2013, Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection, Biosens. Bioelectron., 42, 397, 10.1016/j.bios.2012.10.065