Tandem determination of mitoxantrone and ribonucleic acid using mercaptosuccinic acid-capped CdTe quantum dots

Journal of Luminescence - Tập 190 - Trang 254-260 - 2017
Arash Mohammadinejad1,2, Zarrin Es'haghi1, Khalil Abnous3, Seyed Ahmad Mohajeri3,4
1Department of Chemistry, Payame Noor University, Tehran, P.O. BOX 19395-4697, Iran
2Student Research Committee (SRC), Mashhad University of Medical Sciences, Mashhad, Iran
3Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
4Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Tài liệu tham khảo

Cai, 2011, Determination of lysozyme at the nanogram level in chicken egg white using resonance Ray leigh-scattering method with Cd-doped ZnSe quantum dots as probe, Sens. Actuators, B157, 368, 10.1016/j.snb.2011.04.058 Kairdolf, 2013, Semiconductor quantum dots for bioimaging and biodiagnostic applications, Annu. Rev. Anal. Chem., 6, 143, 10.1146/annurev-anchem-060908-155136 Jr, 1998, Semiconductor nanocrystals as fluorescent biological labels, Science, 281, 2013, 10.1126/science.281.5385.2013 Chan, 1998, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 281, 2016, 10.1126/science.281.5385.2016 Peng, 2000, Shape control of CdSe nanocrystals, Nature, 404, 59, 10.1038/35003535 Ying, 2008, Synthesis and bioimaging application of highly luminescent mercaptosuccinicacid coated CdTe nanocrystals, PLoS One, 3, e2222, 10.1371/journal.pone.0002222 Shim, 1994, Simultaneous determination of a new anthracycline, DA-125, and its metabolites M1 M2,M3 and M4 in plasma and urine by high-performance liquid chromatography, J. Chromatogr. B: Biomed. Sci. Appl., 656, 407, 10.1016/0378-4347(94)00105-7 Gavenda, 2001, Determination of anthracycline antibiotics doxorubicin and daunorubicin by capillary electrophoresis with UV absorption detection, Electrophoresis, 22, 2782, 10.1002/1522-2683(200108)22:13<2782::AID-ELPS2782>3.0.CO;2-I Liu, 2007, Rapid high throughput assay for fluorimetric detection of doxorubicin–application of nucleic acid-dyebioprobe, Anal. Chim. Acta, 587, 47, 10.1016/j.aca.2007.01.013 Vajdle, 2014, Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine, Electrochim. Acta, 132, 49, 10.1016/j.electacta.2014.03.124 Liao, 2005, Spectroscopic and viscosity study of doxorubicin interaction with DNA, J. Mol. Struct., 749, 108, 10.1016/j.molstruc.2005.04.007 Yan, 1997, Interaction of doxorubicin and its derivatives with DNA: elucidation by resonance Raman andsurface-enhanced resonance Raman spectroscopy, Biospectroscopy, 3, 307, 10.1002/(SICI)1520-6343(1997)3:4<307::AID-BSPY6>3.0.CO;2-0 Gopinath, 2005, Human vault-associated non-coding RNAs bind to mitoxantrone, a chemotherapeutic compound, Nucleic Acids Res., 33, 4874, 10.1093/nar/gki809 IV, 2009, Comparison and evaluation of RNA quantification methods using viral, prokaryotic, and eukaryotic RNA over a 104 concentration range, Anal. Biochem., 387, 122, 10.1016/j.ab.2009.01.003 Adegoke, 2016, Gradient band gap engineered alloyed quaternary/ ternary CdZnSeS/ZnSeS quantum dots: an ultrasensitive fluorescence reporter in a conjugated molecular beacon system for the biosensing of influenza virus RNA, J. Mater. Chem. B, 4, 1489, 10.1039/C5TB02449H Darmanis, 2016, Simultaneous multiplexed measurement of RNA and proteins in single cells, Cell Rep., 14, 380, 10.1016/j.celrep.2015.12.021 Jones, 1998, RNA quantitation by fluorescence-based solution assay: ribogreen reagent characterization, Anal. Biochem, 265, 368, 10.1006/abio.1998.2914 Elsholz, 2006, Automated detection and quantitation of bacterial RNA by using electrical microarrays, Anal. Chem., 78, 4794, 10.1021/ac0600914 Ray, 2016, Deciphering molecular aspects of interaction between anticancer drug mitoxantrone and tRNA, J. Biomol. Struct. Latest Artic., 1 Jiang, 2016, A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters, Sens. Actuators B, 232, 276, 10.1016/j.snb.2016.03.100 Huang, 2014, A sensitive quantum dots-based “OFF-ON” fluorescent sensor for ruthenium anticancer drugs and ctDNA, Colloids Surf. B, 117, 240, 10.1016/j.colsurfb.2014.02.031 Ertas, 2015, l-Cysteine capped Mn-doped ZnS quantum dots as a room temperature phosphorescence sensor for in-vitro binding assay of idarubicin and DNA, Biosens. Bioelectron., 70, 345, 10.1016/j.bios.2015.03.055 Zhao, 2014, “Turnoff–on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots, Biosens. Bioelectron., 52, 29, 10.1016/j.bios.2013.08.031 Li, 2011, A sensitive sensor for anthraquinone anticancer drugs and hsDNA based on CdTe/CdS quantum dots fluorescence reversible control, Colloids Surf. A, 392, 7, 10.1016/j.colsurfa.2011.08.037 Alibolandi, 2014, Synthesis of AS1411-Aptamer-Conjugated CdTe Quantum Dots with High Fluorescence Strength for Probe Labeling Tumor Cells, J. Fluoresc., 24, 1519, 10.1007/s10895-014-1437-5 Zhao, 2013, Luminescent ZnO quantum dots for sensitive and selective detection of dopamine, Talanta, 107, 133, 10.1016/j.talanta.2013.01.006 Gong, 2014, Melamine-modulated mercaptopropionic acid-capped manganese doped zinc sulfide quantum dots as a room-temperature phosphorescence sensor for detecting clenbuterol in biological fluids, Sens. Actuators B, 202, 638, 10.1016/j.snb.2014.05.134 Ying, 2014, Simple and sensitive detection method for diprophylline using glutathione-capped CdTe quantum dots as fluorescence probes, J. Lumin., 145, 575, 10.1016/j.jlumin.2013.08.023 Li, 2009, A Modified Method using TRIzol® Reagent and Liquid Nitrogen Produces High-Quality RNA from Rat Pancreas, Appl. Biochem. Biotechnol., 158, 253, 10.1007/s12010-008-8391-0 Available at: 〈http://eng.bioneer.com/products/dnarnaprep/AccZol-TotalRNAExtractionSolution-technical.aspx〉. Sorouraddin, 2014, A new fluorimetric method for determination of valproic acid using TGA-capped CdTe quantum dots as proton sensor, J. Lumin., 145, 253, 10.1016/j.jlumin.2013.07.025 Chao, 2013, Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection, Biosens. Bioelectron., 42, 397, 10.1016/j.bios.2012.10.065