Taiwan Chingguan Yihau may improve post-COVID-19 respiratory complications through PI3K/AKT, HIF-1, and TNF signaling pathways revealed by network pharmacology analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chavda VP, Bezbaruah R, Deka K, Nongrang L, Kalita T (2022) The delta and omicron variants of SARS-CoV-2: what we know so far. Vaccines 10(11):1926
Bardelčíková A, Miroššay A, Šoltýs J, Mojžiš J (2022) Therapeutic and prophylactic effect of flavonoids in post-COVID-19 therapy. Phytother Res 36(5):2042–2060
Cutler DM. The economic cost of long COVID: an update: Harvard University 2022. https://scholar.harvard.edu/cutler/news/long-covid.
Alhiyari MA, Ata F, Alghizzawi MI, Bilal AB, Abdulhadi AS, Yousaf Z (2021) Post COVID-19 fibrosis, an emerging complicationof SARS-CoV-2 infection. IDCases 23:e01041
Maranatha D, Hasan H, Bakhtiar A, Widyoningroem A, Aryati (2022) Association of TNF-α, TGF-β1, amphiregulin, IL-2, and EGFR with pulmonary fibrosis in COVID-19. J Infect Public Health 15(10):1072–5
Beigh S, Rehman MU, Khan A, Patil BR, Makeen HA, Rasool S et al (2022) Therapeutic role of flavonoids in lung inflammatory disorders. Phytomed Plus 2(1):100221
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A (2021) Pulmonary fibrosis: therapeutic and mechanistic insights into the role of phytochemicals. BioFactors 47(3):250–269
Tsai K-C, Huang Y-C, Liaw C-C, Tsai C-I, Chiou C-T, Lin C-J et al (2021) A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: a bedside-to-bench study. Biomed Pharmacother 133:111037
Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes S-S et al (2022) The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med 3(6):100663
Fang S, Dong L, Liu L, Guo J, Zhao L, Zhang J et al (2021) HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 49(D1):D1197–D1206
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S et al (2020) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388–D1395
Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC et al (2020) Comparative toxicogenomics database (CTD): update 2021. Nucleic Acids Res 49(D1):D1138–D1143
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S et al (2020) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504
Ge SX, Jung D, Yao R (2019) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36(8):2628–2629
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T et al (2017) GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database. https://doi.org/10.1093/database/bax028
Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270-7. https://doi.org/10.1093/nar/gkr366
Grosdidier A, Zoete V, Michielin O (2011) Fast docking using the CHARMM force field with EADock DSS. J Comput Chem 32(10):2149–2159
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242
Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3):305–320
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612
Wu Z, Chen X, Ni W, Zhou D, Chai S, Ye W et al (2021) The inhibition of Mpro, the primary protease of COVID-19, by Poria cocos and its active compounds: a network pharmacology and molecular docking study. RSC Adv 11(20):11821–11843
Hsu C-H, Hwang K-C, Chao C-L, Chang SGN, Ho M-S, Lin J-G et al (2008) An evaluation of the additive effect of natural herbal medicine on SARS or SARS-like infectious diseases in 2003: A randomized, double-blind, and controlled pilot study. Evid-Based Complement Altern Med 5:273504
Hsu C-H, Hwang K-C, Chao C-L, Chang SG, Ker C-C, Chien L-C et al (2006) The lesson of supplementary treatment with Chinese medicine on severe laboratory-confirmed SARS patients. Am J Chin Med 34(06):927–935
Lem FF, Opook F, Lee DJH, Chee FT, Lawson FP, Chin SN (2021) Molecular mechanism of action of repurposed drugs and traditional chinese medicine used for the treatment of patients infected with COVID-19: a systematic scoping review. Front Pharmacol 11:58533
Ang L, Lee HW, Choi JY, Zhang J, Lee MS (2020) Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integr Med Res 9(2):100407
Wang J-b, Wang Z-x, Jing J, Zhao P, Dong J-h, Zhou Y-f et al (2020) Exploring an integrative therapy for treating COVID-19: a randomized controlled trial. Chin J Integr Med 26(9):648–55
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S et al (2022) Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine 98:153930
Maltezou HC, Pavli A, Tsakris A (2021) Post-COVID syndrome: an insight on its pathogenesis. Vaccines 9(5):497
Yang Z-H, Wang B, Ma Q, Wang L, Lin Y-X, Yan H-F et al (2021) Potential mechanisms of action of Chinese patent medicines for COVID-19: a review. Front Pharmcol. https://doi.org/10.3389/fphar.2021.668407
Kang X, Jin D, Jiang L, Zhang Y, Zhang Y, An X et al (2022) Efficacy and mechanisms of traditional Chinese medicine for COVID-19: a systematic review. Chin Med 17(1):30
Zheng S, Xue T, Wang B, Guo H, Liu Q (2022) Application of network pharmacology in the study of the mechanism of action of traditional chinese medicine in the treatment of COVID-19. Front Pharmacol 13:926901
Nguyen HT, Do VM, Phan TT, Nguyen Huynh DT (2023) The potential of ameliorating COVID-19 and sequelae from Andrographis paniculata via bioinformatics. Bioinform Biol Insights 17:11779322221149622
Jaffal SM, Abbas MA (2021) TRP channels in COVID-19 disease: Potential targets for prevention and treatment. Chem Biol Interact 345:109567
Ternesten-Hasséus E, Johansson E-L, Millqvist E (2015) Cough reduction using capsaicin. Respir Med 109(1):27–37
Yan X, Hao Q, Mu Y, Timani KA, Ye L, Zhu Y et al (2006) Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol 38(8):1417–1428
Knight D, Mutsaers SE, Prêle CM (2011) STAT3 in tissue fibrosis: is there a role in the lung? Pulm Pharmacol Ther 24(2):193–198
Kappelmann N, Dantzer R, Khandaker GM (2021) Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology 131:105295
Oikonomou N, Harokopos V, Zalevsky J, Valavanis C, Kotanidou A, Szymkowski DE et al (2006) Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS ONE 1(1):e108
Lee C-M, Park JW, Cho W-K, Zhou Y, Han B, Yoon PO et al (2014) Modifiers of TGF-b1 effector function as novel therapeutic targets of pulmonary fibrosis. Korean J Intern Med 29(3):281–290
Yu M-X, Song X, Ma X-Q, Hao C-X, Huang J-J, Yang W-H (2021) Investigation into molecular mechanisms and high-frequency core TCM for pulmonary fibrosis secondary to COVID-19 based on network pharmacology and data mining. Ann Palliat Med 10(4):3960–3975
Qiao B, Wu Y, Li X, Xu Z, Duan W, Hu Y et al (2020) A Network pharmacology approach to explore the potential mechanisms of Yifei Sanjie formula in treating pulmonary fibrosis. Evid-Based Complement Altern Med 2020:8887017
Liu M, Lv F, Huang Y, Xiao K (2021) Follow-up study of the chest CT characteristics of COVID-19 survivors seven months after recovery. Front Med 8:636298
Chen X-Y, Yan B-X, Man X-Y (2020) TNFα inhibitor may be effective for severe COVID-19: learning from toxic epidermal necrolysis. Ther Adv Respir Dis 14:1753466620926800
Ablamunits V, Lepsy C (2022) Blocking TNF signaling may save lives in COVID-19 infection. Mol Biol Rep 49(3):2303–2309
Nath A, Johnson TP (2022) Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 289(8):2145–2161
Hemmat N, Asadzadeh Z, Ahangar NK, Alemohammad H, Najafzadeh B, Derakhshani A et al (2021) The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Adv Virol 166(3):675–696
Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L (2020) Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin 41(12):1539–1546
Vassilaki N, Frakolaki E (2017) Virus–host interactions under hypoxia. Microbes Infect 19(3):193–203
Jahani M, Dokaneheifard S, Mansouri K (2020) Hypoxia: a key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm 17(1):33
Tian M, Liu W, Li X, Zhao P, Shereen MA, Zhu C et al (2021) HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct Target Ther 6(1):308
Lu Y-C, Tseng L-W, Huang Y-C, Yang C-W, Chen Y-C, Chen H-Y (2022) The potential complementary role of using Chinese herbal medicine with western medicine in treating COVID-19 patients: pharmacology network analysis. Pharmaceuticals 15(7):794