Tailoring the particle microstructures of gefitinib by supercritical CO 2 anti-solvent process
Tài liệu tham khảo
Engelman, 2007, MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling, Science, 316, 1039, 10.1126/science.1141478
Gridelli, 2011, Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: review of the evidence, Lung Cancer., 71, 249, 10.1016/j.lungcan.2010.12.008
Kazandjian, 2016, FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer, Clin. Cancer Res., 22, 1307, 10.1158/1078-0432.CCR-15-2266
Bergman, 2007, Pharmacokinetics of gefitinib in humans: the influence of gastrointestinal factors, Int. J. Pharm., 341, 134, 10.1016/j.ijpharm.2007.04.002
Cohen, 2004, United States food and drug administration drug approval summary, gefitinib (ZD1839; iressa) tablets, Clin. Cancer Res., 10, 1212, 10.1158/1078-0432.CCR-03-0564
Godugu, 2016, Novel gefitinib formulation with improved oral bioavailability in treatment of A431 skin carcinoma, Pharmaceut. Res., 33, 137, 10.1007/s11095-015-1771-6
Zhou, 2012, Novel liposomal gefitinib (L-GEF) formulations, Anticancer Res., 32, 2919
Stella, 2007, Prodrug strategies to overcome poor water solubility, Adv. Drug Deliv. Rev., 59, 677, 10.1016/j.addr.2007.05.013
Chen, 2011, Nanonization strategies for poorly water-soluble drugs, Drug Discov. Today, 16, 354, 10.1016/j.drudis.2010.02.009
Chaumeil, 1998, Micronization: a method of improving the bioavailability of poorly soluble drugs, Methods Find. Exp. Clin. Pharmacol., 20, 211, 10.1358/mf.1998.20.3.485666
Blagden, 2007, Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, Adv. Drug Deliv. Rev., 59, 617, 10.1016/j.addr.2007.05.011
Van den Mooter, 2012, The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate, Drug Discov. Today: Technol., 9, e79, 10.1016/j.ddtec.2011.10.002
Coimbra, 2011, Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes, Int. J. Pharm., 416, 433, 10.1016/j.ijpharm.2011.01.056
Noyes, 1897, The rate of solution of solid substances in their own solutions, J. Am. Chem. Soc., 19, 930, 10.1021/ja02086a003
Vippagunta, 2001, Crystalline solids, Adv. Drug Deliv. Rev., 48, 3, 10.1016/S0169-409X(01)00097-7
Gao, 2012, Drug nanocrystals: in vivo performances, J. Control. Release, 160, 418, 10.1016/j.jconrel.2012.03.013
York, 1999, Strategies for particle design using supercritical fluid technologies, Pharm. Sci. Technol. Today, 2, 430, 10.1016/S1461-5347(99)00209-6
Jung, 2001, Particle design using supercritical fluids: literature and patent survey, J. Supercrit. Fluid., 20, 179, 10.1016/S0896-8446(01)00064-X
Cuadra, 2016, Pharmaceutical co-crystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent, J. CO2 Util., 13, 29, 10.1016/j.jcou.2015.11.006
Wu, 2017, Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process, J. Cryst. Growth, 460, 59, 10.1016/j.jcrysgro.2016.12.017
Lim, 2017, Amorphization of crystalline active pharmaceutical ingredients via formulation technologies, Powder Technol., 311, 175, 10.1016/j.powtec.2017.01.004
Djerafi, 2017, Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose, Eur. J. Pharm. Sci., 102, 161, 10.1016/j.ejps.2017.03.016
Neurohr, 2016, Challenge of the supercritical antisolvent technique SAS to prepare cocrystal-pure powders of naproxen-nicotinamide, Chem. Eng. J., 303, 238, 10.1016/j.cej.2016.05.129
Chen, 2016, Recrystallizing primidone through supercritical antisolvent precipitation, Org. Process. Res. Dev., 20, 878, 10.1021/acs.oprd.5b00279
Reverchon, 2011, Mechanisms controlling supercritical antisolvent precipitate morphology, Chem. Eng. J., 169, 358, 10.1016/j.cej.2011.02.064
Yasuji, 2008, Particle design of poorly water-soluble drug substances using supercritical fluid technologies, Adv. Drug Deliv. Rev., 60, 388, 10.1016/j.addr.2007.03.025
Liu, 2015, Tailoring particle microstructures via supercritical CO2 processes for particular drug delivery, Curr. Pharm. Des., 21, 2543, 10.2174/1381612821666150416101116
Widjojokusumo, 2013, Supercritical anti-solvent (SAS) micronization of Manilkara kauki bioactive fraction (DLBS2347), J. CO2 Util., 3-4, 30, 10.1016/j.jcou.2013.09.001
Jiang, 2012, Recrystallization and micronization of 10-hydroxycamptothecin by supercritical antisolvent process, Ind. Eng. Chem. Res., 51, 2596, 10.1021/ie2020334
Wang, 2016, In vitro and in vivo anti-tumor efficacy of 10-hydroxycamptothecin polymorphic nanoparticle dispersions: shape-and polymorph-dependent cytotoxicity and delivery of 10-hydroxycamptothecin to cancer cells, Nanomedicine, 12, 881, 10.1016/j.nano.2015.12.373
Liu, 2014, Preparation of 10-hydroxycamptothecin proliposomes by the supercritical CO2 anti-solvent process, Chem. Eng. J., 243, 289, 10.1016/j.cej.2014.01.023
Wang, 2013, Co-precipitation of 10-hydroxycamptothecin and poly (l-lactic acid) by supercritical CO2 anti-solvent process using dichloromethane/ethanol co-solvent, J. Supercrit. Fluid., 74, 137, 10.1016/j.supflu.2012.11.022
Li, 2012, Effect of process parameters on co-precipitation of paclitaxel and poly (l-lactic acid) by supercritical antisolvent process, Chin. J. Chem. Eng., 20, 803, 10.1016/S1004-9541(11)60251-6
Nagai, 2014, Four new polymorphic forms of suplatast tosilate, Int. J. Pharm., 460, 83, 10.1016/j.ijpharm.2013.10.049
Huang, 2015, New polymorphs of 9-nitro-camptothecin prepared using a supercritical anti-solvent process, Int. J. Pharm., 496, 551, 10.1016/j.ijpharm.2015.10.079
Cheow, 2012, Self-assembled amorphous drug–polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility, J. Colloid Interface Sci., 367, 518, 10.1016/j.jcis.2011.10.011
Reverchon, 2010, Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization, Chem. Eng. J., 156, 446, 10.1016/j.cej.2009.10.052
Liu, 2013, Recrystallization and micronization of camptothecin by the supercritical antisolvent process: influence of solvents, Ind. Eng. Chem. Res., 52, 15049, 10.1021/ie401173g
Martin, 2008, Micronization processes with supercritical fluids: fundamentals and mechanisms, Adv. Drug Deliv. Rev., 60, 339, 10.1016/j.addr.2007.06.019
Chen, 2009, Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles, J. Supercrit. Fluid., 49, 394, 10.1016/j.supflu.2009.02.004
Chen, 2012, Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO2, J. Supercrit. Fluid., 67, 7, 10.1016/j.supflu.2012.03.004
De Marco, 2011, Influence of pressure, temperature and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization, J. Supercrit. Fluid., 58, 295, 10.1016/j.supflu.2011.06.005
Kim, 2007, Micronization of cilostazol using supercritical antisolvent (SAS) process: effect of process parameters, Powder Technol., 177, 64, 10.1016/j.powtec.2007.02.029
Miguel, 2006, Supercritical anti solvent precipitation of lycopene: effect of the operating parameters, J. Supercrit. Fluid., 36, 225, 10.1016/j.supflu.2005.06.009
Reverchon, 2006, Supercritical antisolvent precipitation of Cephalosporins, Powder Technol., 164, 139, 10.1016/j.powtec.2006.03.018
Buckton, 1992, The relationship between particle size and solubility, Int. J. Pharm., 82, R7, 10.1016/0378-5173(92)90184-4
Reverchon, 2007, Nanoparticles production by supercritical antisolvent precipitation: a general interpretation, J. Supercrit. Fluid., 43, 126, 10.1016/j.supflu.2007.04.013
Reverchon, 1999, Supercritical antisolvent precipitation of micro-and nano-particles, J. Supercrit. Fluid., 15, 1, 10.1016/S0896-8446(98)00129-6
Mukhopadhyay, 2003, Partial molar volume reduction of solvent for solute crystallization using carbon dioxide as antisolvent, J. Supercrit. Fluid., 25, 213, 10.1016/S0896-8446(02)00147-X
Martın, 2004, Numerical modeling of jet hydrodynamics mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS) process, J. Supercrit. Fluid., 32, 203, 10.1016/j.supflu.2004.02.009
Rahman, 2014, Chapter five − gefitinib, 239, 10.1016/B978-0-12-800173-8.00005-2
Tanaka, 2004, Structure of gefitinib, analytical sciences, X-ray Struct. Anal. Online, 20, x173, 10.2116/analscix.20.x173
Thorat, 2014, Capturing a novel metastable polymorph of the anticancer drug gefitinib, CrystEngComm, 16, 8638, 10.1039/C4CE01446D
Hammond, 2007, Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid, J. Pharm. Sci., 96, 1967, 10.1002/jps.20869