Tailoring the particle microstructures of gefitinib by supercritical CO 2 anti-solvent process

Journal of CO2 Utilization - Tập 20 - Trang 43-51 - 2017
Guijin Liu1,2, Qing Lin1, Yinxia Huang1, Guoqiang Guan1, Yanbin Jiang1
1School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
2Honz Pharmaceutical Co., Ltd., Haikou 570311, China

Tài liệu tham khảo

Engelman, 2007, MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling, Science, 316, 1039, 10.1126/science.1141478 Gridelli, 2011, Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: review of the evidence, Lung Cancer., 71, 249, 10.1016/j.lungcan.2010.12.008 Kazandjian, 2016, FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer, Clin. Cancer Res., 22, 1307, 10.1158/1078-0432.CCR-15-2266 Bergman, 2007, Pharmacokinetics of gefitinib in humans: the influence of gastrointestinal factors, Int. J. Pharm., 341, 134, 10.1016/j.ijpharm.2007.04.002 Cohen, 2004, United States food and drug administration drug approval summary, gefitinib (ZD1839; iressa) tablets, Clin. Cancer Res., 10, 1212, 10.1158/1078-0432.CCR-03-0564 Godugu, 2016, Novel gefitinib formulation with improved oral bioavailability in treatment of A431 skin carcinoma, Pharmaceut. Res., 33, 137, 10.1007/s11095-015-1771-6 Zhou, 2012, Novel liposomal gefitinib (L-GEF) formulations, Anticancer Res., 32, 2919 Stella, 2007, Prodrug strategies to overcome poor water solubility, Adv. Drug Deliv. Rev., 59, 677, 10.1016/j.addr.2007.05.013 Chen, 2011, Nanonization strategies for poorly water-soluble drugs, Drug Discov. Today, 16, 354, 10.1016/j.drudis.2010.02.009 Chaumeil, 1998, Micronization: a method of improving the bioavailability of poorly soluble drugs, Methods Find. Exp. Clin. Pharmacol., 20, 211, 10.1358/mf.1998.20.3.485666 Blagden, 2007, Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, Adv. Drug Deliv. Rev., 59, 617, 10.1016/j.addr.2007.05.011 Van den Mooter, 2012, The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate, Drug Discov. Today: Technol., 9, e79, 10.1016/j.ddtec.2011.10.002 Coimbra, 2011, Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes, Int. J. Pharm., 416, 433, 10.1016/j.ijpharm.2011.01.056 Noyes, 1897, The rate of solution of solid substances in their own solutions, J. Am. Chem. Soc., 19, 930, 10.1021/ja02086a003 Vippagunta, 2001, Crystalline solids, Adv. Drug Deliv. Rev., 48, 3, 10.1016/S0169-409X(01)00097-7 Gao, 2012, Drug nanocrystals: in vivo performances, J. Control. Release, 160, 418, 10.1016/j.jconrel.2012.03.013 York, 1999, Strategies for particle design using supercritical fluid technologies, Pharm. Sci. Technol. Today, 2, 430, 10.1016/S1461-5347(99)00209-6 Jung, 2001, Particle design using supercritical fluids: literature and patent survey, J. Supercrit. Fluid., 20, 179, 10.1016/S0896-8446(01)00064-X Cuadra, 2016, Pharmaceutical co-crystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent, J. CO2 Util., 13, 29, 10.1016/j.jcou.2015.11.006 Wu, 2017, Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process, J. Cryst. Growth, 460, 59, 10.1016/j.jcrysgro.2016.12.017 Lim, 2017, Amorphization of crystalline active pharmaceutical ingredients via formulation technologies, Powder Technol., 311, 175, 10.1016/j.powtec.2017.01.004 Djerafi, 2017, Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose, Eur. J. Pharm. Sci., 102, 161, 10.1016/j.ejps.2017.03.016 Neurohr, 2016, Challenge of the supercritical antisolvent technique SAS to prepare cocrystal-pure powders of naproxen-nicotinamide, Chem. Eng. J., 303, 238, 10.1016/j.cej.2016.05.129 Chen, 2016, Recrystallizing primidone through supercritical antisolvent precipitation, Org. Process. Res. Dev., 20, 878, 10.1021/acs.oprd.5b00279 Reverchon, 2011, Mechanisms controlling supercritical antisolvent precipitate morphology, Chem. Eng. J., 169, 358, 10.1016/j.cej.2011.02.064 Yasuji, 2008, Particle design of poorly water-soluble drug substances using supercritical fluid technologies, Adv. Drug Deliv. Rev., 60, 388, 10.1016/j.addr.2007.03.025 Liu, 2015, Tailoring particle microstructures via supercritical CO2 processes for particular drug delivery, Curr. Pharm. Des., 21, 2543, 10.2174/1381612821666150416101116 Widjojokusumo, 2013, Supercritical anti-solvent (SAS) micronization of Manilkara kauki bioactive fraction (DLBS2347), J. CO2 Util., 3-4, 30, 10.1016/j.jcou.2013.09.001 Jiang, 2012, Recrystallization and micronization of 10-hydroxycamptothecin by supercritical antisolvent process, Ind. Eng. Chem. Res., 51, 2596, 10.1021/ie2020334 Wang, 2016, In vitro and in vivo anti-tumor efficacy of 10-hydroxycamptothecin polymorphic nanoparticle dispersions: shape-and polymorph-dependent cytotoxicity and delivery of 10-hydroxycamptothecin to cancer cells, Nanomedicine, 12, 881, 10.1016/j.nano.2015.12.373 Liu, 2014, Preparation of 10-hydroxycamptothecin proliposomes by the supercritical CO2 anti-solvent process, Chem. Eng. J., 243, 289, 10.1016/j.cej.2014.01.023 Wang, 2013, Co-precipitation of 10-hydroxycamptothecin and poly (l-lactic acid) by supercritical CO2 anti-solvent process using dichloromethane/ethanol co-solvent, J. Supercrit. Fluid., 74, 137, 10.1016/j.supflu.2012.11.022 Li, 2012, Effect of process parameters on co-precipitation of paclitaxel and poly (l-lactic acid) by supercritical antisolvent process, Chin. J. Chem. Eng., 20, 803, 10.1016/S1004-9541(11)60251-6 Nagai, 2014, Four new polymorphic forms of suplatast tosilate, Int. J. Pharm., 460, 83, 10.1016/j.ijpharm.2013.10.049 Huang, 2015, New polymorphs of 9-nitro-camptothecin prepared using a supercritical anti-solvent process, Int. J. Pharm., 496, 551, 10.1016/j.ijpharm.2015.10.079 Cheow, 2012, Self-assembled amorphous drug–polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility, J. Colloid Interface Sci., 367, 518, 10.1016/j.jcis.2011.10.011 Reverchon, 2010, Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization, Chem. Eng. J., 156, 446, 10.1016/j.cej.2009.10.052 Liu, 2013, Recrystallization and micronization of camptothecin by the supercritical antisolvent process: influence of solvents, Ind. Eng. Chem. Res., 52, 15049, 10.1021/ie401173g Martin, 2008, Micronization processes with supercritical fluids: fundamentals and mechanisms, Adv. Drug Deliv. Rev., 60, 339, 10.1016/j.addr.2007.06.019 Chen, 2009, Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles, J. Supercrit. Fluid., 49, 394, 10.1016/j.supflu.2009.02.004 Chen, 2012, Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO2, J. Supercrit. Fluid., 67, 7, 10.1016/j.supflu.2012.03.004 De Marco, 2011, Influence of pressure, temperature and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization, J. Supercrit. Fluid., 58, 295, 10.1016/j.supflu.2011.06.005 Kim, 2007, Micronization of cilostazol using supercritical antisolvent (SAS) process: effect of process parameters, Powder Technol., 177, 64, 10.1016/j.powtec.2007.02.029 Miguel, 2006, Supercritical anti solvent precipitation of lycopene: effect of the operating parameters, J. Supercrit. Fluid., 36, 225, 10.1016/j.supflu.2005.06.009 Reverchon, 2006, Supercritical antisolvent precipitation of Cephalosporins, Powder Technol., 164, 139, 10.1016/j.powtec.2006.03.018 Buckton, 1992, The relationship between particle size and solubility, Int. J. Pharm., 82, R7, 10.1016/0378-5173(92)90184-4 Reverchon, 2007, Nanoparticles production by supercritical antisolvent precipitation: a general interpretation, J. Supercrit. Fluid., 43, 126, 10.1016/j.supflu.2007.04.013 Reverchon, 1999, Supercritical antisolvent precipitation of micro-and nano-particles, J. Supercrit. Fluid., 15, 1, 10.1016/S0896-8446(98)00129-6 Mukhopadhyay, 2003, Partial molar volume reduction of solvent for solute crystallization using carbon dioxide as antisolvent, J. Supercrit. Fluid., 25, 213, 10.1016/S0896-8446(02)00147-X Martın, 2004, Numerical modeling of jet hydrodynamics mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS) process, J. Supercrit. Fluid., 32, 203, 10.1016/j.supflu.2004.02.009 Rahman, 2014, Chapter five − gefitinib, 239, 10.1016/B978-0-12-800173-8.00005-2 Tanaka, 2004, Structure of gefitinib, analytical sciences, X-ray Struct. Anal. Online, 20, x173, 10.2116/analscix.20.x173 Thorat, 2014, Capturing a novel metastable polymorph of the anticancer drug gefitinib, CrystEngComm, 16, 8638, 10.1039/C4CE01446D Hammond, 2007, Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid, J. Pharm. Sci., 96, 1967, 10.1002/jps.20869